SOFTWARE - PRACTICE AND EXPERIENCE
Softw. Pract. Exper. (2013)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.2211

A feedback technique for unsatisfiable
UML/OCL class diagrams

Asadullah Shaikh!-%*:T and Uffe Kock Wiil!

'The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Denmark
2Department of CS & IT, Institute of Business & Technology, Pakistan

SUMMARY

In Model-Driven Development (MDD), detection of model defects is necessary for correct model transfor-
mations. Formal verification tools and techniques can to some extent verify models. However, scalability is
a serious issue in relation to verification of complex UML/OCL class diagrams. We have proposed a model
slicing technique that slices the original model into submodels to address the scalability issue. A submodel
can be detected as unsatisfiable if there are no valid values for one or more attributes of an object in the
diagram or if the submodel provides inconsistent conditions on the number of objects of a given type. In
this paper, we propose a novel feedback technique through model slicing that detects unsatisfiable submod-
els and their integrity constraints among the complex hierarchy of an entire UML/OCL class diagram. The
software developers can therefore focus their revision efforts on the incorrect submodels while ignoring the
rest of the model. Copyright © 2013 John Wiley & Sons, Ltd.

Received 7 May 2012; Revised 8 May 2013; Accepted 9 May 2013

KEY WORDS: model slicing; feedback technique and slicing UML/OCL models with feedback

1. INTRODUCTION

In the context of Model Driven Development (MDD), Unified Modeling Language/Object Con-
straint Language (UML/OCL) class diagrams are used as higher level designs of software systems.
Afterwards, these class diagrams are transformed into software code to speed up the software devel-
opment process. With the help of this kind of transformation, developers can save their time and
effort by using the transformed code to make their software product.

Considering the fact that within MDD, UML/OCL class diagrams play an important role for
model analysis, design, and transformation; therefore, the verification of these UML/OCL class dia-
grams at earlier stages is an essential task to check the correctness of the model properties, that is,
verification of UML/OCL class diagram with several OCL integrity constraints. We have consid-
ered the static structure diagram that describes the structure of a system modeled as a UML class
diagram. Complex integrity constraints will be expressed in OCL. In this context, the fundamental
correctness properties of a model are satisfiability and unsatisfiability.

“Two different notions of satisfiability can be checked - either weak satisfiability or strong satisfiability.
A class diagram is weakly satisfiable if it is possible to create a legal instance/object of a class diagram
that is non-empty, that is, it contains at least one object from some class. Alternatively, strong satisfia-
bility is a more restrictive condition requiring that the legal instance has at least one object from each
class and a link from each association” [1-4].

*Correspondence to: Asadullah Shaikh, Department of CS & IT, Institute of Business & Technology (Biztek), Pakistan.
TE-mail: shaikhasad @hotmail.com and ashaikh@ibt.edu.pk

Copyright © 2013 John Wiley & Sons, Ltd.

A. SHAIKH AND U. K. WIIL

The unsatisfiability may occur if there are no valid values for one or more attributes of an object in
the diagram.

“Apart from these notions of satisfiability, there are few other notions such as liveliness of class, lack
of constraint subsumptions and lack of constraint redundancies. In liveliness of class, the model must
have finite instances where the population of class must be non-empty. In lack of constraint subsump-
tions, if there are two integrity constraints C; and C», the model should have finite instances where Cy
is satisfiable but C5 is not; otherwise, C1 subsumes C». In lack of constraint redundancies, if there are
two integrity constraints C; and C», the model should have finite instances where only one constraint
is satisfied. In other cases, C; and C» are redundant” [5].

There are formal verification tools for automatically checking correctness properties on models
[6-9], but the lack of scalability and proper feedback in case of unsatisfiable models is usually
a drawback. The UML/OCL class diagram is considered as satisfiable if the interaction of all its
integrity constraints is satisfiable. Alternatively, if any integrity constraint violates a condition given
in an OCL expression, then the class diagram is unsatisfiable. When the class diagram is unsatis-
fiable, the main concern for the designers is to correct it. Therefore, the need for proper feedback
is ever present to make the necessary corrections to change the unsatisfiable class diagram into a
satisfiable class diagram. Current approaches to this problem identify the failed class diagram in
general, that is, if the interaction of any single constraint is unsatisfiable then the entire model is
unsatisfiable, but it does not highlight the exact position of the problem (e.g., the exact OCL con-
straint(s) that made the entire model unsatisfiable). It creates difficulty for the developers, if the
UML/OCL class diagram is complex having a number of classes, associations, attributes, relation-
ships, and OCL invariants and one or more properties are unsatisfiable. In this case, the designers
need to check the expression of each constraint to find out the failing properties and correct them
one by one.

We have addressed the general problem related to lack of scalability in formal verification tools
by proposing a model slicing technique for disjoint sets of submodels and non-disjoint sets of sub-
models [2-4]. However, in this paper, we address another problem concerning feedback if one or
more submodels are unsatisfiable. The proposed slicing technique accepts a UML class diagram
annotated with OCL constraints as an input, breaks the original model m into my, m,, ms,...,my,
submodels while abstracting unnecessary model elements. The process ensures that the model m
is satisfiable if all m, m,, ms,...,m, submodels are satisfiable. Then, satisfiability of each slice is
checked independently, and the results are combined to assess the satisfiability of the entire model.
The proposed slicing technique improved the efficiency of the verification process for large and
complex UML/OCL models. Therefore, with the help of the slicing procedure UML/OCL class dia-
grams that were not verifiable before are now verifiable. For example, the class diagram (Tracking
System) has 50 classes, 60 associations, 72 attributes, and 5 integrity constraints. Before apply-
ing the slicing technique, UMLtoCSP tool [7] verified the model ‘tracking system’ in 3605.35 s
(60.08 min). However, after implementing the slicing algorithm in UMLtoCSP(UOST) [10], the
tool verified the same model in 0.031 s. We achieved a 99% speedup in the verification of the track-
ing system class diagram and 43% speedup for a real world UML/OCL class diagram, that is, DBLP
conceptual schema [2,4].

After applying the slicing technique, if the output of the tool is unsatisfiable then one or more con-
straints are unsatisfiable. This indicates that some submodel having an expression in OCL is violated
and that the objects of the classes cannot be instantiated according to the given OCL expression.
Any submodel of an original model can be unsatisfiable if there are no valid values for one or more
attributes of an object in the diagram or the model provides inconsistent conditions on the number
of objects of a given type.

In this paper, we propose a feedback technique that detects one or more specific unsatisfiable
submodel(s) with its integrity constraints among the complex hierarchy of an entire UML/OCL
class diagram. Our proposal is based on the following: (1) application of the slicing technique;
(2) detection of unsatisfiable submodel(s); and (3) identification of the invariant(s) that cause(s)
the unsatisfiability. The feedback technique will help software developers to highlight unsatisfiable
constraints with minimal effort. The proposed feedback technique can be used for the detection

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

A CONSTRUCTIVE FEEDBACK TECHNIQUE

Combine

Verification -» Verificaton

Property

T/= e (S1) Passed
Ny Resuilts
=y ‘(
L/
Al
e = [Verification
[O | g (S2)
UML Model
Slicing
Show Cluster of
% V°"(";‘;"°" Constraints/Failed
N Constraints
OCL Constraints

Figure 1. Model slicing and feedback process.

of any unsatisfiable UML/OCL class diagram. Figure 1 represents the concept of model slicing
with feedback.

The remainder of the paper provides an overview of the slicing technique, and describes and eval-
uates the feedback technique. Section 2 explores detection of unsatisfiable class diagrams. Section 3
introduces the concept of model slicing. In Section 4 the analysis of OCL constraints is discussed
whereas Section 5 presents the concept of graph-based representation. Section 6 focuses on the pro-
posed technique along with a running example and explains the detection of unsatisfiable models.
In Section 7, related work is presented. Finally, Section 8 provides the conclusions and identifies
directions for future work.

2. DETECTION OF UNSATISFIABLE CLASS DIAGRAMS

Unfortunately, there are currently few tools and techniques that support verification of UML/OCL
class diagrams and, more precisely, these tools can only verify UML models especially UML/OCL
class diagrams up to a limited complexity, that is, the lack of scalability is usually a drawback in
current verification tools. Another problem with these tools is the lack of feedback if the UML/OCL
class diagram is unsatisfiable. Figure 2 introduces the ‘model coach’ class diagram in which one or
more integrity constraints are unsatisfiable.

We verified the model coach UML/OCL class diagram in a tool called UMLtoCSP [7] and the
given output of the tool is ‘No satisfying instance can be found within the specified search space’.
It indicates that one or more invariants are unsatisfiable, but the tool failed to identify the specific
unsatisfiable constraints. In this case, the developers need to check and correct all invariants that
is a time consuming task especially when the model is complex, having hundreds of thousands of
classes and invariants.

Considering the feedback issue in an external tool, we programmed a more complex real world
class diagram of the DBLP conceptual schema [11] in UML2Alloy [12]. The class diagram of the
DBLP conceptual schema is based on 17 classes and 27 integrity constraints. The overall interaction
of the class diagram is unsatisfiable due to one or more expressions given in integrity constraints,
that is, no valid instances can be generated. UML2Alloy transforms the model into Alloy lan-
guage and Alloy Analyzer translates the model into a boolean expression that is analyzed by SAT
solvers. If there are no valid instances found, the UnSat Core [13] will highlight the relevant por-
tions of the original model that contributed to the unsatisfiability. However, the designers need to
correct these UnSat cores one by one, because it is difficult to find out multiple UnSat cores at
a time.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

A. SHAIKH AND U. K. WIIL

0. BookingOffice
Trolley operates ffi - name : String
office :
1%
id :int " location : String
coacl .
number : int 1 1.* officelD : int
specialCoach : String
Coach Employee
5
Trip Uses noOfSeats :int | g4 0..2 |salary :int
— 3.x 1. |type : String id:int employees 1
id:int trips coach |name: String
tripName : String id:int Workin
tripOrigin : String
tripDestination : boolean departments
tripType : String Travels 1
tripNumber : int 1%
dailytrips : int i Department
rips
assengers *
P 9 number : int 0.,
1.*
Ticket
Person
number : int
name : String 1.* 0..* |adultPrice : int
age :int childPrice : int
gender : String

context Coach inv MinCoachSize:

self.noOfSeats > 10

context Coach inv MaxCoachSize:

self.trips —>forAll(t | t.passengers —>size() < noOfSeats)
context Department inv EmployeeSize:
self.employee()—>size() = 7

context Department inv DeptartmentSize:
Department::alllnstances() —>size() = 1

context Ticket inv PositiveTicketNumber:
Ticket::alllnstances() —>forAll(a | a.number> 1)
context BookingOffice inv UniqueOfficelD:
BookingOffice::alllnstances() —>isUnique (t | t.officelD)

Figure 2. UML/OCL class diagram used as running example (model coach).

3. THE CONCEPT OF MODEL SLICING

We have used the model slicing approach to detect unsatisfiable submodel(s). The slicing algorithms
automatically breaks the UML/OCL model into several independent submodels and abstracts the
unused components of class models. The proposed method takes a UML class diagram annotated
with OCL invariants as an input. Figure 2 introduces the class diagram that will be used as an
example for the slicing and feedback technique; it models the information system of a bus company.

Our goal is to detect whether the UML/OCL class diagram is strongly satisfiable, that is, whether
it is possible to generate legal instances from each class and a link for each association. The output
will be either ‘satisfiable’ or ‘unsatisfiable’. If the class diagram is unsatisfiable then there exists one
or more constraints whose interaction is unsatisfiable.

The slicing procedure breaks the UML/OCL class diagram into sets of disjoint and non-disjoint
slices where each slice is a subset of the original model. Afterwards, each slice is verified separately
by the verification engine, and the result of whole model is obtained by combining the results of
all slices. In case of strong satisfiability, it is important to ensure whether all slices are strongly

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

A CONSTRUCTIVE FEEDBACK TECHNIQUE

satisfiable. In case of weak satisfiability, it is enough to check that at least one slice is weakly
satisfiable.

On the contrary, it is also essential to check if the original model is unsatisfiable, the final out-
put will also be unsatisfiable. For example, in strong satisfiability, there should be at least one slice
whose interaction will be strongly unsatisfiable, and in case of weak satisfiability, all slices should
be weakly unsatisfiable. The formal proof of this procedure can be found in [14].

The slicing procedure partitions the UML/OCL class diagram into sets of disjoint and non-disjoint
submodels. The selection of disjoint and non-disjoint submodels depends upon the user. We have
a detailed explanation of the disjoint slicing technique in [2] and the non-disjoint slicing technique
in [4].

4. STUDY OF OBJECT CONSTRAINT LANGUAGE CONSTRAINTS

Object constraint language is the language for describing the rules that apply on UML models.
With the help of OCL, it is possible to define expressions on UML models. These expressions can
either be true or false. In this section, we focus on analysis of OCL constraints to remove infor-
mation irrelevant to the model’s satisfiability. We have introduced the concept of constraint support
and trivially satisfiable patterns. Constraint support helps to identify model elements that are con-
strained by an invariant and therefore, it is possible to analyze two or more constraints belonging to
the same model elements. Trivially satisfiable patterns help to remove those constraints that do no
affect satisfiability.

4.1. Constraint support

The constraint support of OCL invariants represents the set of classes restricted by those constraints.
It identifies classes that are used in the same constraints and therefore must be grouped and ana-
lyzed within the scope of the same slice. We identify OCL invariants and group them if they restrict
the same model elements. We call this clustering of constraints (constraint support). Algorithm 1
illustrates the computation of clusters.

The constraint support defines the scope of a constraint. The support information can be used to
partition a set of OCL invariants into a set of independent clusters of constraints, where each cluster
can be verified separately. The following procedure can be used to compute the clusters:

- Compute the support of each invariant.

- Initially, each constraint is located in a different cluster.

- Select two constraints x and y with non-disjoint support (i.e., support(x) N support(y) # @)
and located in different clusters, and merge those clusters.

- Repeat the previous step until all pairs of constraints with non-disjoint support belong to the
same cluster.

By using the information from Table I, we can identify four clusters in our model: invari-
ants MinCoachSize and MaxCoachSize (support: Coach, Trip, and Person); invariants Employee-
Size and DepartmentSize (support: Department, and Employee); invariant PositiveTicketNumber
(support: Ticket, BookingOffice, Coach, Trip, and Person); and invariant UniqueOfficelD (support:
BookingOffice, Coach, Trip, Person, and Ticket). In the following section, we describe additional
analysis that can abstract clusters of constraints.

4.2. Trivially satisfiable invariants

The detection of trivially satisfiable invariants can improve the efficiency of the verification process
by eliminating those OCL constraints that do not affect satisfiability. It is hard to detect triv-
ially satisfiable constraints, therefore, we limit ourselves to particular patterns. We have defined
a couple of patterns that can be safely removed from the problem. The first pattern is the key con-
straint stating that a given attribute must be unique, for example, Type::alllnstances() —> isUnique
(object|object.attribute). If there is an attribute of type integer, float, or string and it is not used by
any other constraint, it can be trivially satisfied.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

A. SHAIKH AND U. K. WIIL

Table I. Support, attributes, and navigations in the running example.

Invariant Support Attributes Navigations
MinCoachSize Coach Coach.noOfSeats None
MaxCoachSize Coach, Trip, Person Coach.noOfSeats Travels, Uses
EmployeeSize Department, Employee None WorkIn
DepartmentSize Department None None
PositiveTicketNumber Ticket Ticket.number None
UniqueOfficelD BookingOffice BookingOffice.OfficelD None

Table II. Patterns with conditions [2].

Pattern Condition
Type::alllnstances() — isUnique(at) Key constraint if attribute is not constrained
anywhere else.
self.at op exp Derived value constraint if attribute is not used
anywhere else and expression does not involve attribute.
AorB Trivially satisfiable if either A or B are satisfiable.
A and B Trivially satisfiable if either A and B are satisfiable.
A implies B ="AVB Trivially satisfiable if either ~ A or B are satisfiable.
Not A Trivially satisfiable if A is trivially satisfiable
and it is not a key constraint.
self.navigation —>isUnique(at) Trivially satisfiable if attribute is not used anywhere else.

The second pattern is derived value constraint. In this type of pattern the attributes depend on the
values of each other. For example, self attribute op expression where attribute can be type (boolean,
integer, float, and string) not referenced by any other constraint, op is a relational operator, and
expression is an OCL expression.

The key constraint and derived value constraint cannot make the model unsatisfiable because the
values of attributes do not depend on each other. If the attribute is referenced twice in the OCL
expression then there is a possibility of unsatisfiability. Table II defines the patterns with trivially
satisfiable constraints with their conditions [2].

In the beginning, each constraint is trivially satisfiable unless the attribute of that constraint is not
referenced by any other constraint. Considering our running example, MinCoachSize is a derived
value constraint but invariant MaxCoachSize restricts the same attribute ‘noOfSeats’ that is already
referenced by MaxCoachSize . Therefore, invariants MinCoachSize and MaxCoachSize will not be
considered as trivially satisfiable because they are referencing the same attribute. The other type of
constraints, foe example, Type::alllnstances() —>size() = x, if the ‘type’ is referenced more than
once, it will not be counted as a trivially satisfiable pattern. For example, invariants EmployeeSize
and DeptartmentSize are referencing the same type. Finally, invariant PositiveTicketNumber and
UniqueOfficelD are key constraints that can be abstracted.

5. GRAPH BASED REPRESENTATION

A graph-based representation called dependency graph is used to capture the dependencies among
classes in a class diagram. The computation of partitions will simply consist of computing the
connected components of the graph.

A dependency graph is an undirected graph where each vertex is a class. The relationships are
defined through a graph-based representation called flow graph. More formally, a flow graph is
a labeled directed pseudograph, that is, adjacent vertices are connected by arcs (directed) instead
of edges (undirected); there can be arcs from one vertex to itself and multiple arcs between two
vertices. Each vertex of the flow graph is a class of the class diagram and each arc from X to Y cap-
tures a dependency between X and Y. Dependency arcs are labeled with information about the type
of dependency.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

A CONSTRUCTIVE FEEDBACK TECHNIQUE

Coach

Employee

~¢——(Depart-
Employee

Person

Figure 3. Flow graph (left) and dependency graph (right) for the running example.

Two types of relationships among classes are considered: tightly associated and loosely associ-
ated classes. An association with a lower bound of 0 (e.g., 0..3) is called loosely coupled; this means
if an object of class A is instantiated, then it is not necessary that an object of class B must be instan-
tiated. However, tightly coupled classes are the opposite of loosely coupled classes, i.e., they have
an association with a lower bound greater than 1 (e.g., 1..*). Arcs with label 0 can be removed from
the graph because they do not impose any constraint.

By using the previous information, the dependency graph can be created in two steps: (1) identi-
fication of classes, that is, classes constrained by OCL invariants; and (2) we iteratively add classes
that are tightly coupled. For example, Figure 3 shows the flow graph for the running example, where
the visual styles of arcs depict different types of dependencies. Similar representations are also used
in other slicing approaches [15-17].

6. OVERVIEW OF FEEDBACK TECHNIQUE

The goal of the feedback technique is to determine the specific unsatisfiable submodel(s) with its
OCL invariants. The following section focuses on the entire process of the proposed method: (1)
remove trivially satisfiable constraints; (2) compute slices; (3) detect unsatisfiable submodels; and
(4) identify OCL invariants whose interaction is unsatisfiable.

6.1. Feedback technique by example

Algorithm 1 describes the step-by-step slicing procedure for the detection of unsatisfiable submodels
with its invariants. First, before applying the slicing procedure, we remove the trivially satisfi-
able constraints, that is, invariants PositiveTicketNumber (support: Ticket, BookingOffice, Coach,
Trip, and Person); and invariant UniqueOfficeID (support: BookingOffice, Coach, Trip, Person, and
Ticket) as observed in Section 4.2. After the removal of trivially satisfiable constraints, we identify
clusters of constraints by using the information given in Section 4.1. Originally, there were four
clusters in the model but a couple of clusters were removed because of detection of trivially satisfi-
able constraints. The remaining clusters are invariants MinCoachSize and MaxCoachSize (support:
Coach, Trip, and Person) and invariants EmployeeSize and DepartmentSize (support: Department
and Employee).

Second, the slicing procedure is applied over the running example (Figure 2). We will receive
two submodels: Coach, Trip, Person (submodel 1) and Department, and Employee (submodel 2).
Figure 4 highlights the final slices passed to the verification tool UMLtoCSP(UOST) [10] for strong
satisfiability whereas the rest of the classes, associations, and attributes will be removed from the
problem as they do not affect satisfiability.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

A. SHAIKH AND U. K. WIIL

Algorithm 1 Slicing with the identification of failed constraints

Input: Property being verified

Output: A partition P of the model M into non-necessarily disjoint submodels

1:

39:

44
45:

N A A

G < BuildFlowGraph(M) {Creating the flowgraph}

: for each constraint ¢y, ¢3,,c, in M do
remove trivially satisfiable constraints.
: end for
: {Cluster the OCL constraints}
: for each pair of constraints c1,c¢2 in M do
if ConstraintSupport(M, c1) N ConstraintSupport(M , ¢2) # @ then
MergelnSameCluster(cl, c2)
end if
: end for

: {Work on each cluster of constraints separately }
. for each cluster of constraints C/ do

subModel < empty model {Initialize the subModel to be empty }

{Initialize worklist}

workList <— Union of the ConstraintSupport of all constraints in the cluster

while workList not empty do

node < first(workList) {Take first element from workList and remove it}

workList <— workList \ node

for each subclass or superclass ¢ of node do
subModel < subModel U{c}

if ¢ was not before in the subModel then
workList <— workList U{c}

end if
end for
for each class ¢ tightly coupled to node do
if Property = weak SAT then
subModel < subModel U{c}
else if Property = strong SAT then
workList <— workList U{c}

end if
end for
end while

. end for

for each subModel in Model M do
if Property (weak SAT or strong SAT) = True then
return subModel < Object Diagram

else
return failed subModel
for each i nv; in subModel do
if i nv; violates SAT property then
return inv;
end if
end for
end if
end for

Copyright © 2013 John Wiley & Sons, Ltd.

Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

A CONSTRUCTIVE FEEDBACK TECHNIQUE

EmployeeSize

Invariants :
DepartmentSize

| Employee |
Trip Uses noOfSeats : int I 5
— 3ir 1.7 |typo-+String= |I rsatary—int- 1
I tiphameo--String: trips coach W II =t employees l
| © Doctinat || Workin |
tripDogtination--beslean
| N
tripMumberrint= vl Travels II departments I
I 1.X I I
dattytrips it - | 1
e passengers [m— — _I |
1.5 I | Department |
Person I I nameTmt I
I gumer-smng | - ==
: MinCoachSize | ' [
Invariants .
MaxCoachSize |]

Figure 4. Submodels for the verification of strong satisfiability.

Third, the satisfiability of each submodel is checked independently, that is, the interaction of
submodel 1 is satisfiable; however, submodel 2 is unsatisfiable due to violation of one or more prop-
erties. The proposed solution detects the specific unsatisfiable submodel by analyzing the interaction
of each constraint with the help of constraint satisfaction problem (CSP) [18].

Finally, the algorithm of the feedback technique is implemented in the UMLtoCSP(UOST) tool,
therefore, CSP formalism detects the failed property by evaluating the expression in the form of true
or false. In this case, the output of the tool will be unsatisfiable as one of the submodels is unsatisfi-
able, that is, submodel 2. Figure 5 presents the output of the tool for satisfiable model (submodel 1)
and unsatisfiable model (submodel 2) with their respective OCL constraints.

Submodel 1 restricts two constraints whose interaction is satisfiable; however, submodel 2 also
restricts two constraints but one of the constraint’s interaction is unsatisfiable; therefore, the overall
interaction of the model is unsatisfiable. The proposed approach will help developers to focus their
attention on incorrect submodels while ignoring the rest of the model.

6.2. Detection of unsatisfiable submodels

Any submodel can be unsatisfiable due to several reasons. First, it is possible that one of the
invariants provides inconsistent conditions on the number of objects of a given type. For example,
inheritance hierarchies, multiplicities of association/aggregation ends, and textual integrity con-
straints (e.g., Type::alllnstances() —>size() = 7) can restrict the possible number of objects of a
class. Second, it is possible that there are no valid values for one or more attributes of an object in the
diagram. So it seems that an unsatisfiable model either contains an unsatisfiable textual or graphical
constraint. In our running example, the cause of unsatisfiability is multiplicities of association ends.
By using the information given in submodel 2, our proposed algorithm considers the failed model
and its specific invariants with the help of CSP, that is, invariants EmployeeSize and DepartmentSize
(support: Department and Employee) to detect the specific property that causes unsatisfiability. The
given expression (Department::alllnstances() —>size() = 1) for invariant ‘DeptartmentSize’ satisfies
the condition, therefore, the possible source of unsatisfiability is the next invariant ‘EmployeeSize’,
that is, self.employee() —>size() = 7. This invariant violates the given expression, i.e., the size of

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)

DOI: 10.1002/spe

A. SHAIKH AND U. K. WIIL

(4] UMLtoCSP (UO
File Actions Configure About

Ed S8
Model: 1.xmi Translation: 1.xmi I Result: 1.xmi |

'Sub Model 1
The following instance proves that:
* The model satisfies the following properties:
- Strong satisfiability
SubModel Time 0.001 s
Verification Time 0.003 s

Sub Model Invariants :
context Coach inv MinCoachSize: Coach::allinstances()->forAll(ala.noOfSeats>10)
context Coach inv MaxCoachSize: Coach::allinstances()->forAll(ala.trips.passengers->size()<noOfSeats)
'Sub Model 2
No satisfying instance can be found within the specified search space. This means that either:
* The property does not hold or
* The property holds, but only for values outside the search space.
Try verifying the model with wider intervals.

Sub Model Invariants :
context Department inv DeptartmentSize: Department:allinstances()->size()= 1
context Department inv EmployeeSize: Department:allinstances()->forAll(dept|dept. employees->size()=7)

Total Submodel Time 0.001 s
Total Verification Time 0.003 s
Total Time 0.004 s

Figure 5. Screenshot for submodel 1 and submodel 2.

%) UMLtoCSP (UOST): A tool fo
File Actions Configure About

@ S
| Model: 1.xmi | Translation: 1.xmi I Result: 1.xmi |

Sub Model 1
The following instance proves that:
* The model satisfies the following properties:
- Strong satisfiability
SubModel Time 0.000 s
Verification Time 0.003 s

Sub Model Invariants :
context Coach inv MinCoachSize: Coach::allinstances()->forAll(ala.noOfSeats>10)
context Coach inv MaxCoachSize: Coach::allinstances()->forAll(ala.trips.passengers->size()<noOfSeats)
'Sub Model 2
No satisfying instance can be found within the specified search space. This means that either:
* The property does not hold or
* The property holds, but only for values outside the search space.
Try verifying the model with wider intervals.

Sub Model Invariants :
context Department inv EmployeeSize: Department:allinstances()->forAll(dept|dept.employees->size()=7)

Total Submodel Time 0.000 s
Total Verification Time 0.003 s
Total Time 0.003 s

Figure 6. Specific unsatisfiable invariant of submodel 2.

employees in the department must be equal to 7, however, considering the associations in the class
Employee, the maximum number of employees in the department could be 5. This detection pro-
cess will be continued for all invariants of failed submodel(s). As an example, Figure 6 illustrates a

specific invariant that makes the entire class diagram unsatisfiable *.

*There is an option in the tool where a developer can view the total number of invariants belonging to a specific submodel,
that is, satisfiable constraints and unsatisfiable constraints or the specific unsatisfiable constraints.

Copyright © 2013 John Wiley & Sons, Ltd.

Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

A CONSTRUCTIVE FEEDBACK TECHNIQUE

|5 UMLtoCSP (UOST): A Tool for Efficient Verification of UML/OCL Class Diagrams Through Model Slicinm
File Actions Configure About

[Model: 1.xmi T Translation: 1.xmi T Result: 1.xmi]

DuU Moaer 1

No satisfying instance can be found within the specified search space. This means that either:
* The property does not hold or
* The property holds, but only for values outside the search space.

Try verifying the model with wider intervals.

SubModel Time 0.001 s

Verification Time 0.004 s

Sub Model Invariants :
context Department inv DeptartmentSize: Department:allinstances()->size()= 9
Sub Model 2
The following instance proves that:
* The model satisfies the following properties:
- Strong satisfiability
SubModel Time 0.001 s
Verification Time 0.007 s

Sub Model Invariants :
context Coach inv MaxCoachSize: Coach::allinstances()->forAll(a|a.trips.passengers->size()<noOfSeats)
context Coach inv MinCoachSize: Coach::allinstances()->forAll(aja.noOfSeats>10)
Sub Model 3

No satisfying instance can be found within the specified search space. This means that either:

* The property does not hold or

* The property holds, but only for values outside the search space.
Try verifying the model with wider intervals.
SubModel Time 0.000 s
Verification Time 0.006 s

Sub Model Invariants :
context Department inv EmployeeSize: Department:allinstances()->forAll(dept/dept.employees->size()=7)

Following are the failed Invarianits
context Department inv DeptartmentSize: Department::allinstances()-=size()=9
context Department inv EmployeeSize: Department:allinstances()-=forAll(dept|dept.employees->size()= 7)|

Total Submodel Time 0.002 s
Total Verification Time 0.017 s
Total Time 0.019 s

Figure 7. Tool output in case of more than one unsatisfiable invariants.

The feedback technique is able to detect more than one unsatisfiable invariant. For example, if we
add one more unsatisfiable invariant that is as follows:

context Department
inv DeptartmentSize: Department::alllInstances()->size() = 9

UMLtoCSP(UOST) will automatically highlight unsatisfiable invariants as shown in Figure 7.
The developers can therefore correct the highlighted invariants while ignoring other satisfiable
constraints.

These unsatisfiable invariants can be corrected by changing the values of multiplicities either
textually or graphically because the cause of unsatisfiability is multiplicities of association ends.
The interaction of invariant DepartmentSize can be satisfiable by changing the value from
gsize()= 9tosize ()= 1 andinvariant EmployeeSize fromsize ()= 7tosize ()= 5.
Figure 8 shows the output of the tool when both invariants are satisfiable, and therefore, the entire
model is satisfiable®.

SUMLtoCSP(UOST) generated three submodels after correcting invariant DepartmentSize and EmployeeSize. We have
shown only one submodel in Figure 8 as an example.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

A. SHAIKH AND U. K. WIIL

Personl: Person

Travels([Travels \Travels

Trip1: Trip | | Trip2: Trip | | Trip3: Trip

Uses |Uses Uses

Coach1l: Coach
- noOfSeats = 20

-- Object diagram--
Generated by UMLtoCSP (UOST)v2.0 on Sun May 05 22:34:27 2013

Figure 8. Tool output after correction of unsatisfiable invariants.

Employeel: Employee Employee2: Employee Employee3: Employee Employee4: Employee Employee5: Employee

WorkIn WorkIn WorkIn WorkIn WorkIn

Departmentl: Department

-- Object diagram--
Generated by UMLtoCSP (UOST)v2.0 on Sun May 05 23:14:29 2013

Figure 9. Tool output in case of weak satisfiability.

UMLtoCSP(UOST) has several options to show the output of the tool other than strong satisfi-
ability [10]. Therefore, the user can check if the model is weakly satisfiable. Figure 9 shows the
output of the tool in case of weak satisfiability.

6.3. Experimental results

In this section, we explore the experimental results regarding how fast we can compute the unsat-
isfiable submodel(s) and generate feedback. For these experiments, we compare the verification
time of several UML/OCL class diagrams by using the original UMLtoCSP tool [7] and UML-
toCSP(UOST) with slicing and feedback [10]. Table III describes the examples used for our com-
parison. In each example, the property being verified is strong satisfiability and the interaction of
each class diagram is unsatisfiable. The examples ‘scripts 1-3° were programmatically generated to
test large unsatisfiable models.

Table IV shows the experimental results computed using an Intel Core 2 Duo Processor 2.1 GHz
with 2 GB of RAM. All times are measured in seconds and a time-out limit has been set at 2 h
(7200 s). For each example, we give the original verification time, the number of slices in which the
model is divided, the time required to perform all the UML/OCL slicing analysis, and the verification
time after the slicing to generate the feedback for unsatisfiable submodel(s).

The experimental results show that the proposed slicing and feedback techniques are very efficient
even in diagrams with hundreds of classes. With small unsatisfiable models, UMLtoCSP already
performed well, but the feedback in the output screen is not illuminating. However, with the help
of slicing, it is possible to get instant results whether the model is satisfiable or unsatisfiable. In
case of an unsatisfiable model, the feedback technique specifies the specific invariants that cause the
unsatisfiability.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

A CONSTRUCTIVE FEEDBACK TECHNIQUE

Table III. Description of the UML/object constrained language examples.

Example Classes Associations Invariants Strongly satisfiable?
Paper-researcher 2 2 5 No
Shop model 5 4 5 No
Coach 8 8 6 No
DBLP conceptual schema 17 25 26 No
Script 1 100 53 2 No
Script 2 500 227 5 No
Script 3 1000 505 5 No

Table IV. Description of experimental results.

Example OVT Slices ST (s) SVT (s) Speedup (%)
Paper-Researcher 0.001 s 1 0.00 0.001 0

Shop Model 4035.21 s 3 0.00 0.003 99.99
Coach 5008.76 s 2 0.01 0.003 99.99
DBLP Conceptual Schema Time-out 2 0.02 0.05 99.99
Script 1 Time-out 2 0.02 0.05 99.99
Script 2 Time-out 4 0.09 0.07 99.99
Script 3 Time-out 4 0.29 0.34 99.99

OVT, original verification time; SVT, total verification time for all slices; ST, slicing time.

7. RELATED WORK

There are two main sources of previous work relating to feedback for unsatisfiable models: (1) find
out the property that may violate an integrity constraint; and (2) unsatisfiable cores. Cabot et al. [19]
proposed an approach that automatically determines the conditions that may violate an integrity con-
straint. Before transforming the model into code, determination of the properties that may violate
an integrity constraint is essential.

There are other approaches for detecting unsatisfiable cores. Using unsatisfiable cores for debug-
ging design errors has been proposed by Andre et al. [20]. The proposed method is based on a
debugging framework that identifies unsatisfiable cores. The solution is similar to SAT-based debug-
ging. With the help of this method, it is possible to detect faults at earlier stages and speed up the
debugging process. Similar work is proposed by Torlak et al. [13] for detection of unsatisfiable cores
of declarative specifications. This work for finding minimal unsatisfiable cores of declarative speci-
fication is based on recycling core extraction. The SAT solver is the main source for highlighting the
UnSat cores. The computation of UnSat cores is a time consuming process, therefore, efficient com-
pilation methods are used to generate fast results. Initially, the core is returned by the SAT solver,
which is later on translated back into high-level specification language.

Our work is different from previous work: if the model is complex, it is difficult to verify and find
out unsatisfiable OCL constraints. Our proposed method can detect an unsatisfiable submodel and
its integrity constraints for both simple and complex class diagram. We address this problem with
the help of a slicing procedure.

Another source related to our feedback approach is model slicing. Model slicing is used to keep
necessary parts of the model while ignoring the rest of the information. There are a few slicing
approaches that break UML/OCL models (class diagram, sequence diagram, and activity diagram)
into several chunks to transform them into code. These slicing approaches do not provide feedback
if one or more submodels are unsatisfiable. Feedback is only provided to a certain extent, that is,
detection of unsatisfiable submodels. However, what makes those submodels unsatisfiable is hardly
addressed in current literature.

The theory of model slicing is invented to support and maintain large UML models. There are few
methods that support automated extraction of a subset of the model. Viewing large UML models at
first sight is quite a complex task. Context free slicing of the model summarizes static and structural

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

A. SHAIKH AND U. K. WIIL

characteristics of a UML model [21], where the UML model and the multi-graph captures the nodes
and elements of information in the UML model and the relationship between them. A different
approach focusing on class diagram comprehension is the use of coupling metrics [22] to slice large
models for visualization. Finally, the slicing of models consisting of both UML class diagrams and
UML sequence diagrams is considered in [15].

The most recent work on slicing of UML models using model transformation is presented by
Kevin Lano [23]. The approach produces smaller models considering the properties of a model. The
purpose of slicing is to break the model into several submodels for better analysis and understand-
ing. The slicing technique is applied on UML class diagrams and state machines. The main criterion
of slicing is model transformation.

Further directions for related work are OCL impact analysis techniques. Altenhofen et al. [24]
presented an approach to improve model efficiency by considering the changes in the model to
decrease the number of reevaluations. This approach is useful for efficient support of OCL in large-
scale modeling environment. Further work on OCL impact analysis is presented by Uhl et al. [25]
where the authors proposed an algorithm for OCL 2.2 expression and a model change that can effi-
ciently examine several elements in which the values have been changed because of the event. The
algorithm is efficient enough and can handle the optimal complexity for operation calls and recursive
operation calls. Moreover, Goldschmid, and Uhl [26] proposed an approach for textual modeling.
The technique is based on incremental process that helps to keep model elements for partial views
in case of changes to textual view representation.

8. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new technique to provide feedback for unsatisfiable UML/OCL
class diagrams as the detection of failed properties in a complex class diagram is a difficult and
time consuming task. To address this complex problem, we first slice the original class diagram
into several independent submodels. Afterwards, the proposed technique automatically detects the
unsatisfiable submodel(s) with its OCL constraints. Any submodel may have one or more failed
constraints; therefore, in the second stage of the proposed method, we identify the exact failed
properties/constraints that cause unsatisfiability. Experimental results show that the computation of
unsatisfiable models is efficient. It will help developers to correct the specific parts of the model
while ignoring the rest of the complex hierarchy. The feedback technique will help optimize certain
complex tasks of software developers.

As our future work, we plan to explore two research directions. First, we plan to develop a more
specific feedback technique that can suggest possible corrections for a failed property. For example,
to provide an exact solution for a failed invariant. Secondly, we plan to develop a technique that
automatically documents the changes in the model and its transformations. OCL and UML diagram
modifications are important, especially when the model is unsatisfiable. Currently, developers make
changes in the OCL file and save it without recording previous states. As a result, there is no log
that tracks the changes in the file.

REFERENCES

1. Queralt A, Teniente E. Reasoning on UML Class Diagrams with OCL Constraints. In ER’2006, Vol. 4215, LNCS.
Springer-Verlag, 2006; 497-512.

2. Shaikh A, Clarisé R, Wiil UK, Memon N. Verification-driven Slicing of UML/OCL Models. In ASE, 2010; 185-194.

3. Shaikh A, Wiil UK, Memon N. Evaluation of Tools and Slicing Techniques for Efficient Verification of UML/OCL
Class Diagrams. Adv. Software Engineering 2011.

4. Shaikh A, Wiil UK, Memon N. UOST: UML/OCL Aggressive Slicing Technique For Efficient Verification of Mod-
els. In 6th International Workshop on System Analysis and Modelling (SAM 2010), Vol. 6598, Lecture Notes in
Computer Science. Berlin Heidelberg, 2011; 173-192.

5. Cabot J, Claris6 R, Riera D. Verification of UML/OCL Class Diagrams Using Constraint Programming. In /CSTW
’08. IEEE Computer Society, 2008; 73-80.

6. Brucker A, Wolff B. HOL-OCL: A Formal Proof Environment for UML /OCL. In Fundamental Approaches to
Software Engineering, Lecture Notes in Computer Science, 2008; 97-100.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

10.

11.
12.

13.
14.
15.
16.
17.
18.

19.

20.

21.

22.

23.
24.

25.

26.

A CONSTRUCTIVE FEEDBACK TECHNIQUE

. Cabot J, Claris6 R, Riera, D. UMLtoCSP: A Tool for the Formal Verification of UML/OCL Models Using Constraint

Programming. In ASE’2007. ACM, 2007; 547-548.

. Gogolla M, Bohling J, Richters M. Validation of UML and OCL Models by Automatic Snapshot Generation. In

Proceedings of the 6th Int. Conf. Unified Modeling Language (UML 2003). Springer, 2003; 265-279.

. Jackson D. Alloy: A Lightweight Object Modelling Notation. ACM Transactions on Software Engineering and

Methodology 2002; 11(2):256-290.

Shaikh A, Wiil UK. UMLtoCSP (UOST): A Tool For Efficient Verification of UML/OCL Class Diagrams Through
Model Slicing. In SIGSOFT FSE, 2012; 37:1-37:4.

DBLP. Digital Bibliography andy Library Project. http://guifre.Isi.upc.edu/DBLP.pdf.

Kyriakos A, Behzad B, Geri G, Indrakshi R. UML2Alloy: A Challenging Model Transformation. In ACM/IEEE 10th
Int. Conf. on Model Driven Engineering Languages and Systems (MODELS 2007), LNCS, 2007; 436—450.

Torlak E, Chang FSH, Jackson D. Finding Minimal Unsatisfiable Cores of Declarative Specifications. In Proceedings
of the 15th International Symposium on Formal Methods, FM *08. Springer-V, 2008; 326-341.

Shaikh A. Formal Proof of Slicing Technique. http://www.asadshaikh.com/proof/proof.pdf.

Lallchandani JT, Mall R. Slicing UML Architectural Models. In ACM / SIGSOFT SEN, Vol. 33, 2008; 1-9.

Tip F. A Survey of Program Slicing Techniques. Journal of Programming Languages 1995; 3:121-189.

Weiser M. Program Slicing. /[EEE Trans, Software Eng 1984:352-357.

Apt KR, Wallace MG. Constraint Logic Programming Using ECL!PS¢. Cambridge University Press: Cambridge,
UK, 2007.

Cabot J, Teniente E. Determining the Structural Events That May Violate an Integrity Constraint. In The Unified Mod-
eling Language. Modelling Languages and Applications, Vol. 3273, Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2004; 320-334.

Suelflow A, Fey G, Bloem R, Drechsler R. Using Unsatisfiable Cores to Debug Multiple Design Errors. In
Proceedings of the 18th ACM great Lakes symposium on VLSI. ACM, 2008; 77-82.

Kagdi HH, Maletic JI, Sutton A. Context-Free Slicing of UML Class Models. In /CSM’05. IEEE Computer Society,
2005; 635-638.

Kollmann R, Gogolla M. Metric-Based Selective Representation of UML Diagrams. In CSMR’02. IEEE Computer
Society, 2002; 89-98.

Lano K, Rahimi SK. Slicing of UML Models Using Model Transformations. In MoDELS (2), 2010; 228-242.
Altenhofen M, Hettel T, Kusterer S. OCL Support in an Industrial Environment. In Models in Software Engineering,
Vol. 4364, Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2007; 169-178.

Uhl A, Goldschmidt T, Holzleitner M. Using an OCL Impact Analysis Algorithm for View-Based Textual Modelling.
ECEASST 2011; 44.

Goldschmidt T, Uhl A. Incremental Updates for View-Based Textual Modelling. In ECMFA, 2011; 172-188.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)

DOI: 10.1002/spe

