
SOA Security Aspects in Web-Based
Architectural Design

Asadullah Shaikh, Sheeraz Ali, Nasrullah Memon and Panagiotis Karampelas

Abstract Distributed web-based applications have been progressively increasing in
number and scale over the past decades. There is an intensification of the need for se-
curity frameworks in the era of web-based applications when we refer to distributed
telemedicine interoperability architectures. In contrast, Service Oriented Architec-
ture (SOA) is gaining popularity day by day when we specially consider the web
applications. SOA is playing a major role to maintain the security standards of dis-
tributed applications. This paper proposes a secure web-based architectural design
by using the standards of SOA for distributed web application that maintains the in-
teroperability and data integration through certain secure channels. We have created
CRUD (Create, Read, Update, Delete) operations that has an implication on our own
created web services and we propose a secure architecture that is implemented on
CRUD operations.
The paper provides an extensive description of the prevention of replay attacks and
a detailed explanation for applying security measures.

Keywords: SOA Security, web-based SOA Security, SOA CRUD Security.

Asadullah Shaikh
Universitat Oberta de Catalunya Barcelona Spain,
e-mail: ashaikh@uoc.edu

Sheeraz Ali
Cursor Software Solutions, UAE,
e-mail: sheeraz@cursorsoft.net

Nasrullah Memon
Maersk Mc-Kinney Moller Institute,
University of Southern Denmark Denmark,
e-mail: memon@mmmi.sdu.dk

Panagiotis Karampelas
Hellenic American University, Athens, Greece,
e-mail: pkarampelas@hau.gr

1

2 Asadullah Shaikh, Sheeraz Ali, Nasrullah Memon and Panagiotis Karampelas

1 Introduction

Service Oriented Architecture (SOA) is gaining popularity day by day due to the
fact that it is useful for making interoperable web-based applications [1, 2]. The
non-secure SOA based applications create many problems for different web based
applications especially concerning the security aspects. However, security in enter-
prise applications has not been addressed adequately. In the present situation, the
security aspects in architectural designs are not considered until a serious problem
occurs during the developmental stages that violates the policy. Architectural de-
signs are always being considered as a preliminary stage of a development process,
therefore, if the designing of an architecture for a system is planned to be secured,
then it should not be a major problem to maintain the security during the implemen-
tation process.

Fig. 1 Web Service Interaction

Apart from that, the current telemedicine web-based applications are being
widely used in the e-health care system [3, 4], and out of them the majority of
applications are distributed due to the several placement locations. These applica-
tions store the patient’s history, personal details etc, which are quite confidential
data. Nevertheless, there is less attention paid to the security of these heterogenous
telemedicine web based applications [4]. Figure 1 refers to a normal structure of a

SOA Security Aspects in Web-Based Architectural Design 3

web application interaction based on web services between the service provider and
service consumer applications.

Considering all of above aspects, this paper proposes the security aspects for our
developed architectural design [5] to address the security issues in order to provide
a suitable solution. To configure these security aspects appropriately, we took into
account several standards of security implementation over the web and multiple dis-
tributed applications. As a result, we decided to design an architecture that integrates
the necessary security measures in the developmental process and is very straight-
forward for the developers. Our proposed secure architectural design is based on
Public Key Infrastructure (PKI) security for authentication and authorization [6].
Furthermore, the proposed security aspects have an implication on CRUD opera-
tions which are web-based services that were previously implemented [5].

The rest of the paper is structured as follows. Section 1.1 introduces the concept
of CRUD operations, section 1.2 defines the security using SOA and section 1.3
outlines the security problems. Furthermore, Section 2 provides an overview of web
security in CRUD operations. Section 3 presents the proposed architecture. Later on,
section 4 explains the experiments and results. Finally, section 5 is about previous
work related to SOA security and section 6 draws on some conclusions and future
work.

1.1 CRUD Operations

Our previously designed telemedicine architecture is based on SOA. We have im-
plemented CRUD operations as a basic application function in order to interact with
the database. These CRUD operations perform database operations such as data re-
trieval, data creation, data deletion and data updation at an application level. Table
1 briefly describes the mapping of CRUD functions with database operations.

1.2 Security using SOA

The SOA approach is widely used to develop the several components of web ser-
vices. These services contain their own security techniques [7]. WS-Security pro-
vides a communication protocol to apply the security of web services [8]. It de-
scribes Simple Object Access Protocol (SOAP) messaging to enable security ser-
vices specially in terms of integrity, message confidentiality and message authenti-
cation, and furthermore, it helps to provide encryption techniques. This kind of se-
curity provides a flexible design for security models such as Secure Sockets Layer
(SSL) and Kerberos. Nevertheless, it provides security tokens, trust domains, sig-
natures and encryption technologies. In order to exchange the secured messages
using WS-Security, there will be common tokens which should be shared between
requester and provider. Figure 2 describes the general structure of WS-Security.

4 Asadullah Shaikh, Sheeraz Ali, Nasrullah Memon and Panagiotis Karampelas

Fig. 2 WS-Security Structure [7]

1.3 Security Problems

WS-Security is quite flexible and capable, however, its configuration in real time
examples is difficult for users. So far and to the best of our knowledge, the secu-
rity for CRUD operations used in web services has not been discussed sufficiently.
Therefore the security aspects of the following points are not considered:

• CRUD operations are developed in web services, and so what should the security
measurements be in order to get the patient data?

• CRUD operations are persistent storage functions that are implemented in the
form of web services [3], If the patient data is updated, how can its authentication
be ensured?

• In the case of deleting a record, how can somebody be authorized to do this?

This paper presents security aspects to handle security in accordance with the
CRUD operations that are implemented and accessible as a web service.

2 WS-Security in CRUD operations

CRUD is the combination of four basic operations: Create, Read, Update, and Delete
which are used for permanent storage [3], and are the major components of every
computer software application. Since data is the most important and valuable in any
web-based application, therefore it should be transmitted securely. In our proposed
work, we have provided the security for our CRUD operations using WS-Security.

3 Proposed Architecture

In this section, we describe the proposed architecture of our web services along with
the CRUD security implementation. The major structure of the proposed process

SOA Security Aspects in Web-Based Architectural Design 5

Table 1 List of CRUD Services with Security [3]

Service Name CRUD Type Description Security Type

CRUD InsertPatientRecord
Take email/MMS data from email WS-Security (Username Token)

Create server and then parse them and
insert it into database.

CRUD GetPatientRecord
Retrieves the patient’s records WS-Security (Username Token)

Read against the patient’s
personal number.

CRUD DeletePatientRecord Delete Deletes the patient’s records. WS-Security (Username Token)
CRUD UpdatePatientRecord Update Updates patient’s record. WS-Security (Username Token)

of SOA security for CRUD operations is divided in two external interfaces; one
interface is between the nurse and the application and the other interface is between
the doctor and the application. The flow of both interfaces is illustrated in Figure 3.

3.1 Interface between Nurse and Application

Initially, the first operation that needs to be performed is that the nurse sends the
patient record to a telemedicine application from a cell phone with a premium phone
number registered in the application. Premium numbers are the special type of cell
phone numbers that are designed especially for telemedicine applications in order
to process secure data transmission from nurse end to doctor end. Secondly, an
application sends a random unique code for verification to the nurse end. Thirdly, the
nurse replies for verification and finally, if the verification is performed successfully,
then the data will be processed (update or create) to CRUD operations.

3.2 Interface between Doctor and Application

In order to maintain the security for our telemedicine application, the following
steps are undertaken in the case of a doctor’s interaction with application.

1. The doctor selects a CRUD operation from the given User Interface (UI) which
will consume a web service. Afterwards, the running telemedicine application
encrypts the message with a private key and then the secure SOAP message with
encryption will be sent to the telemedicine application.

2. The security handler of a telemedicine application decrypts the message with the
doctor’s public key.

3. The security handler checks certain permission given to a particular doctor in
order to select the CRUD operation to be performed.

4. CRUD operation is performed.

6 Asadullah Shaikh, Sheeraz Ali, Nasrullah Memon and Panagiotis Karampelas

3.3 Security Measures for an Intruder

In the worst case scenario, the intruder can also try to attack our telemedicine ap-
plication, therefore, if the intruder sends the operation message, the SOAP message
without encryption will be sent to a telemedicine application to access the CRUD
operations. Afterwards, the security handler of a telemedicine application may de-
crypt the message with the doctor’s public key but the decryption will fail and the
message will be discarded.

Fig. 3 Proposed Security Architectural Design

3.4 Security Implementation at Nurse’s End

Authentication and Authorization (AA) at the nurse’s end is performed in two levels.
In the first level of security, the messages sent by nurse can only be accepted from
premium cell phone numbers that are registered in an application. In the second
level of security, once the messages are received, the telemedicine application sends
a unique code to the nurse for verification, and the nurse replies to the message with
the same code. The idea to introduce the second level security is to ensure that the
message was sent from a premium number through a cell phone as the message can

SOA Security Aspects in Web-Based Architectural Design 7

also be sent from Web2SMS or Web2MMS with any number. Therefore, a nurse
needs to send the reply for verification in order to pass the secure data into CRUD
operations.

3.5 Security Implementation at the Doctor’s End

We have developed the security implementation of telemedicine system architecture
using Apache Axis [9], which is an open source XML based Web Service frame-
work. We have used Apache Web Services Security for Java (WSS4J) [10] which
is the implementation of the OASIS Web Services Security (WS-Security) from the
Organization for the Advancement of Structured Information Standards (OASIS)
Web Services Security Technical Committee (TC) [11]. WSS4J is used to sign and
verify SOAP messages with WS-Security information. Furthermore, WSS4J is used
for securing our CRUD web services along with the support of the Apache Axis
web service framework. WSS4J generates and processes the SOAP bindings for
XML Security with XML Signature and XML Encryption. It also provides the To-
kens for username, timestamps and Security Assertion Markup Language (SAML)
tokens. The security of CRUD operations is deployed with username tokens.
The configuration of the security deployment and usage is described by the imple-
mentation given in listings 1 to 5 .

In listing 1, the WSS4J handlers are added to the service deployment descrip-
tor in the Web Service Deployment Descriptor (WSDD) file for adding the WS-
Security layer to our telemedicine CRUD services. Afterwards, adding handlers, the
server side deployment descriptor also defines the request and response flows. In the
RequestFlow (Listing 1, Line 5), with every incoming request for a CRUD opera-
tion, there are two security handlers that authenticate and authorize the request. The
TeleWoundServiceSecurityHandler (Listing 1, Line 21) decrypts the SOAP message
with a public key of the Doctor using PKI security. Once the message is decrypted,
WSDoAllReceiver (Listing 1, Line 13) verifies the username and password for au-
thorization. Meanwhile, in the ResponseFlow (Listing 1, Line 18), every response
is encrypted with the doctor’s public key and the message is digitally signed for
authentication with the telemedicine’s private key.

In listing 2, a password callback class called PWCallback (Listing 2, Line 1)
is created by implementing the CallbackHandler interface. This CallbackHandler
is called before every CRUD operation request to check the authorization of the
provided username and password. If the username and password exists in the ap-
plication, then there will be the verification of permission on the selected CRUD
operation (Listing 2, Line 8). For example, a user may have the access only on the
CRUD operation READ, while the CRUD operation UPDATE is not permitted, then
PWCallback class will not allow any action on UPDATE operation due the assigned
permissions.

8 Asadullah Shaikh, Sheeraz Ali, Nasrullah Memon and Panagiotis Karampelas

Listing 1 Code for Request and Response Flows
1 <dep loyment xmlns= h t t p : / / xml . apache . o rg / a x i s / wsdd / x m l n s : j a v a =
2 ” h t t p : / / xml . apache . o rg / a x i s / wsdd / p r o v i d e r s / j a v a ”>
3 <s e r v i c e name=” TeleWound−wss−01” p r o v i d e r =” java:RPC ” s t y l e =
4 ” document ” use =” l i t e r a l ”>
5 <r e q u e s t F l o w>
6 <h a n d l e r t y p e =” j a v a : o r g . apache . a x i s . h a n d l e r s . JAXRPCHandler ”>
7 <p a r a m e t e r name=” scope ” v a l u e =” s e s s i o n ” />
8 <p a r a m e t e r name=” className ” v a l u e =” T e l e W o u n d S e r v i c e S e c u r i t y H a n d l e r ” />
9 <p a r a m e t e r name=” k e y S t o r e F i l e ” v a l u e =” c :\\TeleWound\\key\\s e r v e r . ks ” />

10 <p a r a m e t e r name=” t r u s t S t o r e F i l e ” v a l u e =” c :\\TeleWound\\key\\s e r v e r . t s ” />
11 <p a r a m e t e r name=” c e r t E n t r y A l i a s ” v a l u e =” c l i e n t k e y ” />
12 </ h a n d l e r>
13 <h a n d l e r t y p e =” j a v a : o r g . apache . ws . a x i s . s e c u r i t y . WSDoAllReceiver ”>
14 <p a r a m e t e r name=” p a s s w o r d C a l l b a c k C l a s s ” v a l u e =” PWCallback ” />
15 <p a r a m e t e r name=” a c t i o n ” v a l u e =” UsernameToken ” />
16 </ h a n d l e r>
17 </ r e q u e s t F l o w>
18 <r e s p o n s e F l o w>
19 <h a n d l e r t y p e =” j a v a : o r g . apache . a x i s . h a n d l e r s . JAXRPCHandler ”>
20 <p a r a m e t e r name=” scope ” v a l u e =” s e s s i o n ” />
21 <p a r a m e t e r name=” className ” v a l u e =” T e l e W o u n d S e r v i c e S e c u r i t y H a n d l e r ” />
22 <p a r a m e t e r name=” k e y S t o r e F i l e ” v a l u e =” c :\\TeleWound\\key\\s e r v e r . ks ” />
23 <p a r a m e t e r name=” t r u s t S t o r e F i l e ” v a l u e =” c :\\TeleWound\\key\\s e r v e r . t s ” />
24 <p a r a m e t e r name=” c e r t E n t r y A l i a s ” v a l u e =” c l i e n t k e y ” />
25 </ h a n d l e r>
26 </ r e s p o n s e F l o w>
27 <p a r a m e t e r name=” scope ” v a l u e =” a p p l i c a t i o n ” />
28 <p a r a m e t e r name=” className ” v a l u e =” TeleWound ” />
29 <p a r a m e t e r name=” a l lowedMethods ” v a l u e =” C R U D I n s e r t P a t i e n t R e c o r d ” />
30 <p a r a m e t e r name=” a l lowedMethods ” v a l u e =” CRUD UpdatePat ientRecord ” />
31 <p a r a m e t e r name=” a l lowedMethods ” v a l u e =” CRUD Dele tePa t i en tRecord ” />
32 <p a r a m e t e r name=” a l lowedMethods ” v a l u e =” CRUD GetPat ientRecord ” />
33 </ s e r v i c e>
34 </ dep loyment>

Listing 2 Code for Password Callback
1 p u b l i c c l a s s PWCallback{
2 p u b l i c vo id h a n d l e (C a l l b a c k [] c a l l b a c k s) throws
3 IOExcep t ion , U n s u p p o r t e d C a l l b a c k E x c e p t i o n {
4 f o r (i n t i = 0 ; i < c a l l b a c k s . l e n g t h ; i ++) {
5 i f (c a l l b a c k s [i] i n s t a n c e o f WSPasswordCallback) {
6 WSPasswordCal lback pc = (WSPasswordCallback) c a l l b a c k s [i] ;
7 / / s e t t h e password g i v e n a username
8 i f (” TeleMedicineAdmin ” . e q u a l s (pc . g e t I d e n t i f i e r (){
9 / / s e t t h e password

10 }}
11 e l s e{
12 throw new U n s u p p o r t e d C a l l b a c k E x c e p t i o n (c a l l b a c k s [i] , ” Unrecogn ized C a l l b a c k ”) ;
13 }}}

In Listing 3, TeleWoundServiceSecurityHandler class is securing the message
by encryption and decryption using PKI security. The message is digitally signed
to authenticate the provider of the message. With every incoming CRUD request,
handleRequest() method (Listing 3, Line 5) is called to decrypt the SOAP message
with sender’s public key. Therefore, for every outgoing response, handleResponse()
method (Listing 3, Line 23) is called for encrypting the SOAP message and to digi-
tally sign the message.

Listing 3 Code for Authentication
1 P u b l i c c l a s s T e l e W o u n d S e r v i c e S e c u r i t y H a n d l e r implements Hand le r {
2 p r i v a t e S t r i n g k e y S t o r e F i l e , keyStoreType , k e y S t o r e P a s s w o r d ,
3 k e y E n t r y A l i a s , keyEnt ryPassword , t r u s t S t o r e F i l e ,
4 t r u s t S t o r e T y p e , t r u s t S t o r e P a s s w o r d , c e r t E n t r y A l i a s ;
5 p u b l i c boolean h a n d l e R e q u e s t (MessageContex t c o n t e x t) {
6 t r y {
7 SOAPMessageContext s o a p C o n t e x t = (SOAPMessageContext) c o n t e x t ;
8 SOAPMessage soapMessage = s o a p C o n t e x t . ge tMessage () ;
9 Document doc = SOAPUt i l i t y . toDocument (soapMessage) ;

10 U t i l i t y . d e c r y p t (doc , k e y S t o r e F i l e , keyStoreType ,
11 keyS to rePas sword , k e y E n t r y A l i a s , keyEn t ryPas sword) ;
12 U t i l i t y . v e r i f y (doc , t r u s t S t o r e F i l e , t r u s t S t o r e T y p e ,
13 t r u s t S t o r e P a s s w o r d) ;
14 U t i l i t y . c l e a n u p (doc) ;
15 soapMessage = SOAPUt i l i t y . toSOAPMessage (doc) ;
16 s o a p C o n t e x t . s e t M e s s a g e (soapMessage) ;

SOA Security Aspects in Web-Based Architectural Design 9

17 } ca tch (E x c e p t i o n e){
18 System . e r r . p r i n t l n (” h a n d l e R e q u e s t E x c e p t i o n : ” + e) ;
19 re turn f a l s e ;
20 }
21 re turn true ;
22 }
23 p u b l i c boolean h a n d l e R e s p o n s e (MessageContex t c o n t e x t) {
24 t r y {
25 SOAPMessageContext s o a p C o n t e x t = (SOAPMessageContext) c o n t e x t ;
26 SOAPMessage soapMessage = s o a p C o n t e x t . ge tMessage () ;
27 Document doc = SOAPUt i l i t y . toDocument (soapMessage) ;
28 U t i l i t y . s i g n (doc , k e y S t o r e F i l e , keyStoreType ,
29 keyS to rePas sword , k e y E n t r y A l i a s , keyEn t ryPas sword) ;
30 U t i l i t y . e n c r y p t (doc , t r u s t S t o r e F i l e , t r u s t S t o r e T y p e ,
31 t r u s t S t o r e P a s s w o r d , c e r t E n t r y A l i a s) ;
32 soapMessage = SOAPUt i l i t y . toSOAPMessage (doc) ;
33 s o a p C o n t e x t . s e t M e s s a g e (soapMessage) ;
34 } ca tch (E x c e p t i o n e){
35 System . e r r . p r i n t l n (” h a n d l e R e s p o n s e E x c e p t i o n : ” + e) ;
36 re turn f a l s e ;
37 }
38 re turn true ;
39 }
40 p u b l i c boolean h a n d l e F a u l t (MessageContex t c o n t e x t) {
41 re turn true ;
42 }
43 p u b l i c vo id i n i t (H a n d l e r I n f o c o n f i g) {
44 Map c o n f i g P r o p s = c o n f i g . g e t H a n d l e r C o n f i g () ;
45 k e y S t o r e F i l e = (S t r i n g) c o n f i g P r o p s . g e t (” k e y S t o r e F i l e ”) ;
46 keyS to reType = (S t r i n g) c o n f i g P r o p s . g e t (” keyS to reType ”) ;
47 k e y S t o r e P a s s w o r d = (S t r i n g) c o n f i g P r o p s . g e t (” k e y S t o r e P a s s w o r d ”) ;
48 k e y E n t r y A l i a s = (S t r i n g) c o n f i g P r o p s . g e t (” k e y E n t r y A l i a s ”) ;
49 keyEn t ryPas sword = (S t r i n g) c o n f i g P r o p s . g e t (” keyEn t ryPas sword ”) ;
50 t r u s t S t o r e F i l e = (S t r i n g) c o n f i g P r o p s . g e t (” t r u s t S t o r e F i l e ”) ;
51 t r u s t S t o r e T y p e = (S t r i n g) c o n f i g P r o p s . g e t (” t r u s t S t o r e T y p e ”) ;
52 t r u s t S t o r e P a s s w o r d = (S t r i n g) c o n f i g P r o p s . g e t (” t r u s t S t o r e P a s s w o r d ”) ;
53 c e r t E n t r y A l i a s = (S t r i n g) c o n f i g P r o p s . g e t (” c e r t E n t r y A l i a s ”) ;
54 }}

Listing 4 Code for Client Request
1 <dep loyment xmlns=” h t t p : / / xml . apache . o rg / a x i s / wsdd / ”
2 j a v a =” h t t p : / / xml . apache . o rg / a x i s / wsdd / p r o v i d e r s / j a v a ”>
3 <t r a n s p o r t name=” h t t p ” p i v o t =” j a v a : o r g . apache . a x i s .
4 t r a n s p o r t . h t t p . HTTPSender ”>
5 <g l o b a l c o n f i g u r a t i o n>
6 <r e q u e s t F l o w>
7 <h a n d l e r t y p e =” j a v a : o r g . apache . a x i s . h a n d l e r s . JAXRPCHandler ”>
8 <p a r a m e t e r name=” scope ” v a l u e =” s e s s i o n ” />
9 <p a r a m e t e r name=” className ” v a l u e =” T e l e W o u n d S e r v i c e S e c u r i t y H a n d l e r ” />

10 <p a r a m e t e r name=” k e y S t o r e F i l e ” v a l u e =” c :\\TeleWound\\key\\s e r v e r . ks ” />
11 <p a r a m e t e r name=” t r u s t S t o r e F i l e ” v a l u e =” c :\\TeleWound\\key\\s e r v e r . t s ” />
12 <p a r a m e t e r name=” c e r t E n t r y A l i a s ” v a l u e =” c l i e n t k e y ” />
13 </ h a n d l e r>
14 </ g l o b a l c o n f i g u r a t i o n>
15 </ t r a n s p o r t>
16 </ t r a n s p o r t>
17 </ dep loyment>

3.6 Prevention From Replay Attack

Replay attacks are also called ”man-in-the-middle attack” where a hacker makes in-
dependent connections in order to break the barrier of an application. As discussed
before, we have implemented the security on a bottom level which is efficient, less
expensive and easy to maintain for developers and designers [12]. One of the ma-
jor factors in our proposed architecture is the prevention from replay attacks where
an attacker can access our encrypted SOAP messages to extract the patient’s con-
fessional data. Figure 4 illustrates the scenario in which the hacker/intruder tries to
breach encrypted security messages in order to reach at the telemedicine web-based
application. To prevent this, we have used PKI and digital signatures for encryption,

10 Asadullah Shaikh, Sheeraz Ali, Nasrullah Memon and Panagiotis Karampelas

authentication and authorization. However, the authentication is not limited to only
that but also the digitally signed message can be recorded through several capturing
techniques which can be resend. We call this a Replay Attack

Replay attacks can be prevented by making each SOAP message unique. There
are different type of techniques used for uniqueness of SOAP message like a num-
ber or bit string used only once (nonce), time stamping etc. Fortunately, WSS4J
provides time stamping for each SOAP message to prevent replay attack easily. In
order to avoid these types of attacks, we have used timestamping in our security ar-
chitecture. Timestamping is a chain of characters, pointing the data or time at which
an event is occurred. In timestamping, each event is recorded by a computer. List-
ing 5 represents the code used in our telemedicine application to avoid the replay
attacks through timestamping. We have set the maximum duration of 10 seconds
of each timestamp. Figure 5 shows an over all view after prevention from replay
attacks.

Fig. 4 Proposed Security Architectural Design

Listing 5 Code for Timestamping
1 <S : Enve lope xmlns : S=” h t t p : / / www. w3 . org / 2 0 0 1 / 1 2 / e n v e l o p e ”
2 xmlns : wsu=” h t t p : / / schemas . xmlsoap . o rg / ws / 2 0 0 2 / 0 7 / u t i l i t y ”>
3 <S : Header>
4 <wsu : Timestamp>
5 <wsu : C r e a t e d>2009−09−15T06 : 2 7 : 0 0 Z</ wsu : C r e a t e d>
6 <wsu : E x p i r e s>2009−09−15T06 : 3 7 : 0 0 Z</ wsu : E x p i r e s>
7 <wsu : Rece ived Ac to r =” h t t p : / / t e l e m e d i c i n e . com / ” Delay=” 60000 ”>
8 2009−09−15T06 : 3 0 : 0 0 Z
9 </ wsu : Rece ived>

10 </ wsu : Timestamp>
11 <!−−Other Header D e t a i l s−−>
12 </ S : Header>
13 <S : Body>
14 <!−−SOAP Message here−−>
15 </ S : Body>
16 </ S : Enve lope>

SOA Security Aspects in Web-Based Architectural Design 11

Fig. 5 Proposed Security Architectural Design

Table 2 Scenarios for Timestamping
SOAP Message Encrypted SOAP Message Message Created at Message Expired at Current Time End Result

Without Encrypted with N/A N/A N/A Message executed
Timstamping getPatient(”abc”) digital signature successfully
(Doctor)
Without Encrypted (Recorded) N/A N/A N/A Recorded Message
Timstamping Message Encrypted with executed
(Intruder) recorded to replay digital signature successfully
With getPatient(”abc”) Encrypted with 2009-09- 2009-09- 2009-09- Message executed
Timstamping with digital signature 15T06:27:00Z 15T06:37:00Z 15T06:32:00Z successfully before
(Doctor) timestamp expiry time
With Encrypted (Recorded) 2009-09- 2009-09- 2009-09- Recorded Message
Timstamping Message Encrypted with 15T06:27:00Z 15T06:37:00Z 15T06:48:00Z rejected as time is
(Intruder) recorded to digital signature expired.

replay

4 Experiments and Results

”In this section, we present the context in which the experiment examines the as-
sumptions that are required to maintain the consistency and dynamics of the pro-
posed security architecture. Table 3 summarizes the experimental results obtained
by the implementation of our proposed technique. Column Actor, represents an actor
who is the user of the telemedicine application, column CRUD Operations(Encode)
describes the operation called by an actor who has certain rights. Column CRUD
Data displays patient’s data, column Encryption + Signature describes the en-
crypted CRUD data along with the signature and the column Security Type shows
the type of security implemented on prescribed actor depending on permissions. Fi-
nally, the column Decryption shows the patient’s decrypted data if and only if all

12 Asadullah Shaikh, Sheeraz Ali, Nasrullah Memon and Panagiotis Karampelas

the security steps become successful and the column Receiving Message(Decode)
shows a message once the decryption has failed or passed. All these results provide
an overview of our developed security over CRUD operations.

Table 3 Results of proposed security Architecture
Actor CRUD CRUD Data Encryption + Security Type Decryption Receiving

Operations Signature Message
(Encode) (decode)

Nurse Create,Update Patient Data N/A Premium Number N/A 1. Patient Record
Patient Record +Verification Code 2. Verification Code

Doctor Update,Delete,Read Patient Data BN89bOi + PKI Encryption+ Patient Data CRUD Operation
Patient Record 978654 Digital Signature Perfomed

Intruder Create,Update,Delete Patient Data Any Encryption Invalid PKI Encryption No Data Received CRUD Operation
Read,Patient Record or Signature +Digital Signature due to wrong Failed

Encryption
+ Signature

4.1 Security Scenarios

For the sake of brevity and without loss of generality, in this section we consider
different scenarios of security. These scenarios are based on obtained result from
our prototype (Table 2):

Scenario 1 (No Security Implemention): In simple SOA implementation with-
out the security, there is a risk that intruder can access the confidential information
by simple capture of network traffic.

Scenario 2 (Message is Encrypted to Protect Confidential Data of a Pa-
tient): To avoid the access of confidential information to intruder, we have im-
plemented the encryption to secure the SOAP messages during communication be-
tween Telemedicine System and its client application for doctors. However, intruder
can use the same encryption mechanism to generate SOAP messages and exploit the
functionality of Telemedicine System.

Scenario 3 (Message is Signed with the Digital Signature for Authentication
and Authorization): For authentication and authorization of the doctor, we have
used PKI infrastructure to digitally sign the SOAP messages to ensure that the mes-
sages are coming from the real and registered doctor, who has the access to the
system. Although intruder cannot decrypt and change the message but still there is
a chance to capture and record the signed encrypted message and replay the same
message to exploit the functionality of the system. We call this replay attack.

Scenario 4 (The Message is Time stamped to Prevent Replay Attack): To
prevent the system from replay attack, we have used the time stamping. In time
stamping, we append the creation and expiry time with each message. As recording
and replaying of message take some time therefore, within that time frame, the mes-
sage will be expired, thus the expired messages will be rejected by the Telemedicine
System.

SOA Security Aspects in Web-Based Architectural Design 13

5 Related Work

In this section, we discuss the existing work on SOA Security. Most of the work
in this area is done for SOA security specification. Their goal of implementing the
security is to achieve the authentication, authorization and so on for web services.
However, research work on the CRUD operations using WS-Security is hardly found
in the literature.

Phan, Cecilia [13] addressed the security challenges for SOA. The author de-
scribed the problems raised from XML which is not secure enough and causes
problems in security protocol. They also presented certain strategies to cope with
vulnerabilities against attacks and other security policy consideration.

Larrucea [14] proposed an approach describing a holistic view of a SOA environ-
ment. In this research, ISOAS framework allows functionality criterions of security
policies with service specification that allows the definition of functional and non
functional components in coherent way and is dependent on the metamodel. This
effort is implemented in Eclipse, and it is due to that, that it is an open approach.
Apart from that, their approach is aligned with OMG standards.

Satoh F et al. [15] discussed a process of security configuration that defines the
responsibilities of developers. In this end-to-end SOA security configuration, several
kinds of information are needed such as requirements, platform information and
so on. Due to that, they defined the roles of developers during the development
phase. SOA security is complex therefore the domain federation is considered in
this research. In general, they contribute to the correct configuration to reduce the
workload of developers.

Robert Bunge et al. [16] proposed an operational framework of a network admin-
istrator using SOA network security. In this research, they characterize the steps in
SOA network security in order to collect the information regarding threats and SOA
deployments. Furthermore, they collect the SOA security efforts. As a result, by
considering the factors of SOA network security, they provide recommendations for
dealing with the XML network traffic for SOA applications. The proposed approach
is filtered to inspect XML at the network’s level. Their framework contributes to se-
cure SOA design by clarifying the duties of network administrators and software
engineers using XML-based services.

Yamany H, Capretz M [7] described an intelligent security service that is em-
bedded in a framework to secure web services in SOA. This framework is designed
to interact with authentication to run the authentication process and it also helps to
secure a possible web attack. An SOA environment holds several security environ-
ments that interact through multiple channels. In their work, they have examined the
security service layer and message security layer.

All the above work presented so far is not similar to ours, because of implement-
ing security over CRUD operations. If the CRUD operations are secured enough,
then there is no need to apply high level security which is a definitely a complex
task. Our CRUD operations are interacting with created web services, therefore if
we apply the security on CRUD, the web-service will also be secured simultane-
ously. However, we have designed and implemented a system architecture that rep-

14 Asadullah Shaikh, Sheeraz Ali, Nasrullah Memon and Panagiotis Karampelas

resents the scenario of security standards by considering CRUD operations along
with web services.

6 Conclusions and Future Work

In this work, we have proposed an architectural design by considering the security
aspects for our designed CRUD operations using SOA. We believe that SOA has
multiple solutions of web services. The core use of CRUD operations is to fetch,
update, delete, read the data from a perspective database, therefore if CRUD is se-
cure enough, then there is no such need to implement the high level security. In our
designed architecture, communication is done through SOAP messages and we have
implemented WSS4J and PKI security in order to protect SOAP headers. It creates
the efficiency of the security process and prevents web attacks. As a future work, the
application of similar efficient security techniques can be explored in cloud comput-
ing.

References

1. Xiangping Chen, Gang Huang, and Hong Mei. Towards automatic verification of web-based
soa applications. In APWeb, pages 528–536, 2008.

2. Nelly A. Delessy and Eduardo B. Fernandez. A pattern-driven security process for soa appli-
cations. Availability, Reliability and Security, International Conference on, 0:416–421, 2008.

3. Asadullah Shaikh, Muhammad Misbahuddin, and Muniba Shoukat Memon. A system design
for a telemedicine health care system. In IMTIC, pages 295–305, 2008.

4. Wail M. Omar and A. Taleb-Bendiab. Service oriented architecture for e-health support ser-
vices based on grid computing over. Services Computing, IEEE International Conference on,
0:135–142, 2006.

5. Asadullah Shaikh, Muniba Memon, Nasrullah Memon, and Muhammad Misbahuddin. The
role of service oriented architecture in telemedicine healthcare system. Complex, Intelligent
and Software Intensive Systems, International Conference, 0:208–214, 2009.

6. MSDN. X.509 technical supplement, Accessed December.24,2009 [Online]. http://
msdn.microsoft.com/en-us/library/aa480610.aspx.

7. H.F. Yamany and M.A.M. Capretz. Use of Data Mining to Enhance Security for SOA. In
Convergence and Hybrid Information Technology, 2008. ICCIT’08. Third International Con-
ference on, volume 1, 2008.

8. Giovanni Satoshi Bob Atkinson, et al. Web services security (ws-security), copyright c©
2002-2002 international business machines corporation, microsoft corporation, Accessed De-
cember.24,2009 [Online]. http://www.cgisecurity.com/ws/ws-secure.pdf.

9. Apache. Apache Axis, Accessed December.24,2009 [Online]. http://ws.apache.org/
axis.

10. Apache. Apache WSS4J, Accessed December.24,2009 [Online]. http://ws.apache.
org/wss4j.

11. Organization for the Advancement of Structured Information Standards(OASIS). Web
services security technical committee, Accessed April.3,2009 [Online]. http://www.
oasis-open.org/committees/tchome.php?wgabbrev=wss.

SOA Security Aspects in Web-Based Architectural Design 15

12. Asadullah Shaikh, Aijaz Soomro, Sheeraz Ali, and Nasrullah Memon. The security aspects
in web-based architectural design using service oriented architecture. In 13th International
Conference on Information Visualisation, IV 09, 15-17 July 2009, Barcelona, Spain, pages
461–466, 2009.

13. C. Phan. Service Oriented Architecture (SOA)-Security Challenges and Mitigation Strategies.
In IEEE Military Communications Conference, 2007. MILCOM 2007, pages 1–7, 2007.

14. X. Larrucea and R. Alonso. ISOAS: Through an independent SOA security specification. In
Proceedings of the Seventh International Conference on Composition-Based Software Systems
(ICCBSS 2008), pages 92–100. IEEE Computer Society, 2008.

15. Fumiko Satoh, Yuichi Nakamura, Nirmal K. Mukhi, Michiaki Tatsubori, and Kouichi Ono.
Methodology and tools for end-to-end soa security configurations. In SERVICES ’08: Pro-
ceedings of the 2008 IEEE Congress on Services - Part I, pages 307–314, Washington, DC,
USA, 2008. IEEE Computer Society.

16. Robert Bunge, Sam Chung, Barbara Endicott-Popovsky, and Don McLane. An operational
framework for service oriented architecture network security. In HICSS ’08: Proceedings of
the Proceedings of the 41st Annual Hawaii International Conference on System Sciences, page
312, Washington, DC, USA, 2008. IEEE Computer Society.

