UOST: UML/OCL Aggressive Slicing Technique
for Efficient Verification of Models

Asadullah Shaikh, Uffe Kock Wiil, and Nasrullah Memon

The Maersk Mc-Kinney Moller Institute
University of Southern Denmark
{ashaikh,ukwiil ,memon}@mmmi .sdu.dk

Abstract. In Model Driven Development (MDD), model errors are a
primary concern in development methodology. UML/OCL models have
increased both in size and complexity due to its popularity in model
design and development. Consequently, the efficiency of the verification
process is being affected. The verification of these models is each time
more laborious because of their complex design and size thus prolong-
ing the verification process. In this paper, we propose an algorithm of
an aggressive slicing technique that works on UML/OCL models (a col-
lection of classes, associations, inheritance hierarchies, and OCL con-
straints) which improves the efficiency of the verification process. With
this technique, the submodels of an original model are computed through
partitioning those classes and multiplicities that are not used in written
constraints and at the same time, ensuring that the model behavior is
not affected. We attempt to quantify the speed-up achieved by adding
the slicing technique to two different tools (1) UMLtoCSP and (2) Al-
loy. The purpose behind showing the results in UMLToCSP and Alloy
is to demonstrate that the developed slicing technique is neither tool
dependent nor formalism dependent.

Keywords: Non Disjoint UML/OCL Slicing, Model Slicing, Verifica-
tion of UML/OCL Models, Non Disjoint Slicing of UML/OCL Class
Diagrams.

1 Introduction

UML/OCL models are designed in order to provide a high-level description of
a software system which can be used as a piece of documentation or as an in-
termediate step in the software development process. In the context of Model
Driven Development (MDD) and Model Driven Architecture (MDA), a correct
specification is required because all the technology is based on model transfor-
mation. Therefore, if the original model is wrong, this clearly causes a failure
of the final software system. Regrettably, verification of a software product is
a complex and time consuming task [6] and that also applies to the analysis of
the software models. With increasing model size and complexity, the need for
efficient verification methods able to cope with the growing difficulties is ever
present, and the importance of UML models has increased significantly [2].

F.A. Kraemer and P. Herrmann (Eds.): SAM 2010, LNCS 6598, pp. 173 2011.
© Springer-Verlag Berlin Heidelberg 2011

174 A. Shaikh, U.K. Wiil, and N. Memon

At present, we are facing efficiency problems when verifying OCL constraints
of complex UML class diagrams. As the complexity of a model can be exponential
in terms of model size (i.e., the number of classes, associations, and inheritance
hierarchies), reducing the size of a model can cause a drastic speed-up in the
verification process. One possible approach is slicing; which is partitioning the
class diagram and OCL constraints into smaller fragments according to certain
criteria. This partition should preserve the property under verification in the
sense that it should be possible to assess the property in the original model
from the analysis of the partitions. A careful definition of the partition process
is needed to ensure this.

We focus our discussion on the verification of a specific property: satisfiabil-
ity, i.e., “is it possible to create objects without violating any constraint?” The
property is relevant in the sense that many interesting properties, e.g., redun-
dancy of an integrity constraint, can be expressed in terms of satisfiability [5].
Two different notions of satisfiability can be checked: either weak satisfiability or
strong satisfiability. A class diagram is weakly satisfiable if it is possible to create
a legal instance/object of a class diagram which is non-empty, i.e., it contains at
least one object from some class. Alternatively, strong satisfiability is a more re-
strictive condition requiring that the legal instance has at least one object from
each class and a link from each association [4]. A few slicing techniques exist
that break large models into smaller segments, however, those techniques do not
address the verifiability of UML/OCL models. Previous research on slicing has
focused on slicing methods of UML architectural models and verifying invariants
in pieces [ILI3,I0,I5,IT].

In this paper, we propose an aggressive slicing technique which preserves the
satisfiability of the model after partitioning. The technique improves the effi-
ciency of the verification process for large and complex UML/OCL models. The
technique includes a set of heuristics that are used to partition a model when de-
termining its satisfiability. That is, given a model ‘m’, the technique partitions m
into my, meo, mg,...m,, submodels, where m is satisfiable if all m1, mso, ms,...m,
submodels are satisfiable. This slicing technique is called the UML/OCL Slicing
Technique (UOST). We provide an experimental evaluation of this technique
using a verification tool for UML to CSP which is called UMLtoCSP [4] and
Alloy [8]. We examine both small and large UML/OCL models with 2, 15, 50,
100, 500, and 1000 UML/OCL class diagrams and several OCL invariants to
measure the efficiency of the verification process through our proposed UOST.
The original explanation of the slicing technique can be found in [1I7]. How-
ever, this paper presents a solution for a non disjoint set of submodels using a
more aggressive slicing technique that can still preserve the satisfiability of the
model after partitioning. It also provides extensive results achieved by adding
the slicing technique to an external tool (Alloy). The primary reason for showing
the results in both Alloy and UMLtoCSP is to demonstrate that the developed
slicing technique is neither tool dependent nor formalism dependent. It can be
applied into any formal verification tool for UML/OCL models.

UML/OCL Aggressive Slicing Technique 175

The rest of the paper is structured as follows. Section [2ldescribes the concepts
of UML/OCL model slicing. Section Bl presents the solution for non disjoint
submodels. Sections @] and Bl present the results obtained from model slicing.
Section [@ reviews some previous work related to slicing. Finally, Sect. [l presents
conclusions and future work.

2 UML/OCL Model Slicing

The input of our method is a UML class diagram annotated with OCL invariants.
Figure[lintroduces a class diagram that will be used as an example; the diagram
models the information system of a bus company. Several integrity constraints
are defined as OCL invariants.

Two different notions of satisfiability will be considered for verification: strong
satisfiability and weak satisfiability. A class diagram is weakly satisfiable if it is
possible to create at least one instance of at least one class out of all classes
in the class diagram. Alternatively, in the case of strong satisfiability, it is an
obligation that at least one object of all classes must be instantiated [4]. For
example, it is possible that objects of all classes are not instantiated due to
multiple inheritance, composition, and aggregation. In this case, the model will
be considered as unsatisfiable in the case of strong satisfiability. Consequently,
strong satisfiability requires the existence of an object for each concrete subclass
of an abstract class.

The proposed approach instantiates objects for verification purposes based
on a given class diagram and OCL constraints of the system. A successful ver-
ification result ensures that the model complies with the system specifications
imposed at the start of the development phase and therefore, the developers may
continue with transforming the model into software code.

The algorithm takes a UML/OCL model as an input, breaks it into several
submodels with respect to invariants and verifies the properties of each constraint
to determine whether the input class diagram has legal instances which satisfy all
integrity constraints of class attributes. The slicing algorithm can be applied over
a large model to reduce the size and complexity of the UML/OCL model, so that
it can be verified more efficiently. Slicing of UML class diagrams is dependent
on the OCL constraints. Thus, if there are 3 constraints in the model, slicing
might result in three submodels.

A slice S of a UML class diagram D is another valid UML class diagram
where any element (class, association, inheritance, aggregation, ...) appearing
in S also appears in D, but the reverse does not necessarily hold.

In the context of satisfiability, saying that “a class X depends on a class
Y” means that creating an object of class Y creates an obligation that must
be satisfied by class X, e.g., the existence of n corresponding objects in class
X. Relationships like associations, aggregations, and inheritance hierarchies can
create these types of dependencies. For instance, in associations the dependency
is typically bidirectional, as the multiplicity of each association end imposes a
dependency on the other class.

176 A. Shaikh, U.K. Wiil, and N. Memon

Trolly operates e Employes
i i

id:int B . id:int

number: int 0.* 0. n;me. : Slnng. ! jobtype : int
location : String
officelD : int 1 has

1.
Tii 1
v Coach 0.”
fripName : String R 0.2

R o
tripOrigin : String Uses S has . Manager
tripDestination : Sting | 4.7 1 b -SMMB 4 gMachine —

. - St) name : Stin
tripType : Stiing ips coaeh | nootSeats. int e ing
tripNumber : int

1.” Travels
o.r

tiips 1.*
Ticket
1
10 number : int
passengers .

FY——— SalaryCategory
souarte Passenger 1 0.7 ype - Sting
name : Sting ? ZF
age :int -
gender : Sting AdultTicket ChildTicket
adultPrice : Int childPrice : Int

context Coach inv passengerSize :
self.trips—>select(r|r.ocllsTypeOf(RegularTrip))—>for All(t|t.passengers —>size() <
noOfSeats)

context Ticket inv ticketNumberPositive:

self. number > 0

context Passenger inv NonNegativeAge:

self.age > 0

Fig.1. UML/OCL class diagram used as running example (model Coach)

2.1 The UOST Process

The method introduced for computing UML/OCL slicing is shown in Fig.
The process begins in step 1 by identifying the classes, associations, and gener-
alizations created in model M and subsequently, drawing a flowgraph. In step
2, we identify OCL invariants and group them if they restrict the same model
elements. We call this “clustering of constraints” (Constraint Support). The con-
straint support defines the scope of a constraint. The support information can
be used to partition a set of OCL invariants into a set of independent clus-
ters of constraints, where each cluster can be verified separately. The following
procedure is used to compute the clusters:

— Compute the constraint support of each invariant.

— Keep each constraint in a different cluster.

— Select two constraints x and y with non disjoint constraint supports and
located in different clusters, and merge those clusters.

— Repeat the previous step until all pairs of constraints with non disjoint con-
straint supports belong to the same cluster.

UML/OCL Aggressive Slicing Technique 177

Step2 : Constraint Support/Clusters
Identify and cluster the

Step 1: Flowgraph
Identify the classes, _— _ %
associations, generalizations, created in constraints that restrict the same
UML/OCL model M and draw flow graph. model elements

Y
Step 4: Slices Step 3: Partitions
Determine the loosely For each cluster of constraints in
coupled and tightly coupled model M, determine the partition
classes for the classes P that must be kept to satisfy the cluster of
selected in partition P, which are OCL constraints by merging the partition of
necessary to preserve the property each constraint in the cluster.

Fig. 2. UOST Process Steps

In step 3, for each cluster of constraints in model M, the partition P is deter-
mined that holds all those classes and relationships restricted by the constraints
in the cluster. In this step, we can capture the possible number of slices with the
consideration of OCL invariants. Each partition will be a subset of the original
model.

In step 4, tightly coupled classes are added to each partition in accordance
with the lower bound > 1 association. It means that if the constraint is restricted
from class X, it is necessary to check the lower bound > 1 associated classes
with X. In this step, all the associated classes are added to a partition, which
results in a model slice.

2.2 Flowgraph: Step 1

In this section, we illustrate the UOST Slicing Algorithm (2)) through an exam-
ple. Consider the ‘model Coach’ scenario whose UML class diagram and OCL
constraints are shown in Fig. [[l There are three constraints that restrict the
classes and out of them two are local invariants and one is global. An invariant
is called local to a class C if it can be evaluated by examining only the values of
the attributes in one object of class C. However, expressions that do not fit into
this category, because they need to examine multiple objects of the same class
or some objects from another class, are called global.

By applying step 1 (Fig.[2)), we build a flowgraph based on the identification of
classes, associations, and generalizations as shown in Fig.[3l We use the concept
of a flowgraph to capture the dependencies among model elements. This concept
is also used by other slicing approaches [I8T4]16]. A flowgraph is a set of vertices
and directed arcs where the vertices represent classes from a class diagram and
the arcs model relationships between these classes. In our approach, a flowgraph
contains vertices and arcs for each pair of classes connected by associations,
generalizations, aggregations, or compositions.

We consider two types of relationships among classes; tightly associated and
loosely associated classes. These relationships attempt to capture the necessity
of creating instances of one class when an instance of the other exists. Loosely
coupled classes have an association with a lower bound of 0 (e.g., 0..3); this

178 A. Shaikh, U.K. Wiil, and N. Memon

Fig. 3. Flowgraph of model Coach

Table 1. Loosely and tightly coupled classes

UML relationship Loosely/Tightly Coupled Arc/Edge
Association: Lower bound > 1 (e.g., 1..%) Tightly Coupled —
Association: Lower bound = 0 (e.g., 0..3) Loosely Coupled -—

Generalization, Aggregation, and Composition Tightly Coupled —

means if an object of class A is instantiated, then it is not necessary that an
object of class B must be instantiated. Tightly coupled classes are the inverse of
loosely coupled classes, i.e., they have an association with a lower bound greater
than 1 (e.g., 1..%).

In the case of aggregation, composition, and generalized classes, we count
them as tightly coupled classes. To differentiate aggregation, composition, and
generalized classes from associations in the flowgraph, we use a solid undirected
edge (—) as a shortcut for two directed arcs between the two classes. A tightly
coupled association between two classes is shown as a solid arc (—), while a
loosely coupled association is shown as a dashed arc (--+). Table 1 briefly sum-
marizes the criteria to assign loosely coupled and tightly coupled relationships
and Algorithm 1 shows the steps that compute a flowgraph for a given class
diagram.

2.3 Applying UOST: Step 2, Step 3, and Step 4

In this section, we compute constraint support, partitions and form the final
slices for verifiability.

Considering the model Coach where Model M = (Coach, Trolley, Booking Of-
fice, Passenger, Ticket, Trip, RegularTrip, VendingMachine, Manager, Employee,
SalaryCategory, AdultTicket, and ChildTicket) and Constraints C = (passenger-
Size, ticketNumberPositive, and NonNegativeAge). We are supposed to find the
legal instances of three invariants, i.e., passengerSize, ticketNumberPositive, and
NonNegativeAge.

UML/OCL Aggressive Slicing Technique 179

Algorithm 1. Flowgraph creation

Input: A model M
Output: A labeled directed graph G = (V, E)

: {Start with the empty graph}
Let V—0and E — 0
: {Add all classes of the model to the flowgraph}
for class ¢ in model M do
V —VuU{c}
end for
{Create incoming and outgoing arcs in the flowgraph}
. for each association end A in model M do
E «— (x,y) where z is the type of the association end and y is the type of the other class in
the association
10: if the lower bound of the multiplicity of A is > 1 then

LRI IUR W

11: Label the arc (z,y) as tightly coupled

12: else if the lower bound of the multiplicity of A = 0 then
13: Label the arc (z,y) as loosely coupled

14: end if

15: end for

16: for each generalization, aggregation and composition G between classes = and y do
17! E— EU{(z.9)}U{(y,2)}

18: Label the arcs (z,y) and (y,) as tightly coupled

19: end for

Applying step 2, we identify and cluster the OCL constraints. It is necessary
to cluster the invariants beforehand, as the set of model elements constrained
by each invariant may have an interaction. Considering Fig. [, there are three
invariants that restrict class Coach, Ticket, and Passenger. In this case, con-
straint NonNegativeAge will be merged with passengerSize because the proper-
ties of these constraints can be satisfied from similar model elements. Meanwhile,
the properties of ticketNumberPositive can be satisfied from different model
elements.

In step 3, for each constraint and group of constraints in model M, the par-
tition P will be determined that holds all those classes and multiplicities from
which the cluster of invariants are constrained. In this step, we can capture
the possible number of slices with the consideration of OCL invariants. Each
partition will be a subset of the original model.

In step 4, all the tightly coupled classes are added into formed partitions in
order to preserve the property of an invariant because it is necessary that the
object of each class must be instantiated in case there is strong satisfiability,
otherwise, the property will not be satisfied. For the cluster of passengerSize
and NonNegativeAge, we need classes Coach, Trip, RegularTrip, and Passen-
ger while classes Ticket, BookingOffice, Trolley, VendingMachine, Manager, Em-
ployee, SalaryCategory, AdultTicket, and ChildTicket can safely be removed from
the slice (i.e., sl).

Similarly, to satisfy the properties of ticketNumberPositive, we require classes
Booking Office, Coach, Trip, RegularTrip, Passenger, VendingMachine, Ticket,
AdultTicket, and ChildTicket, while classes Trolley, Manager, Employee, and
SalaryCategory can be deleted from the slice (i.e., s2). Figure and
highlight the final slices passed to the verification tool for strong satisfiability.
The members of a slice are hence defined as follows:

180 A. Shaikh, U.K. Wiil, and N. Memon

Algorithm 2. Slicing Algorithm

Input: Property being verified
Output: A partition P of the model M into non-necessarily disjoint submodels

G — BuildFlowGraph(M) {Creating the flowgraph}
{Cluster the OCL constraints}
. for each pair of constraints c1,¢2 in M do
if ConstraintSupport(M, cl) N ConstraintSupport(M,c2) # () then
MergeInSameCluster(cl, ¢2)
end if
end for
{Work on each cluster of constraints separately}
. for each cluster of constraints C'l do
10: subModel « empty model {Initialize the subModel to be empty}
11: {Initialize worklist}

LRI IUR W

12: workList «— Union of the ConstraintSupport of all constraints in the cluster
13: while workList not empty do

14: node «— first(workList) {Take first element from workList and remove it}
15: workList < workList \ node

16: for each subclass or superclass ¢ of node do

17: subModel < subModel U{c}

18: if ¢ was not before in the subModel then

19: workList < workList U{c}

20: end if

21: end for

22: for each class c tightly coupled to node do

23: if Property = weak SAT then

24: subModel < subModel U{c}

25: else if Property = strong SAT then

26: workList « workList U{c}

27: end if

28: end for

29: end while

30: end for

— The classes and relationships in the cluster of constraint supports are part
of the slice.

— Any class with a tightly coupled relationship to a class in the slice is also a
part of the slice, as is the relationship.

3 Non Disjoint Solution

In this section, we present the solution that still preserves the satisfiability in
case of non disjoint submodels. Non disjoint submodels may occur if a common
class is used in several constraints. In the worst case, the clustering technique in
Sect. Pl may result in the whole UML model and consequently no improvements
in verification time. The non disjoint solution can be selected by the designer
in the tool (UMLtoCSP) if the model is constrained by several invariants in a
way which makes clustering ineffective. The non disjoint solution differs from
the UOST process (see Fig. B)) in that it works without clustering the model
elements, hence making it still possible to improve verification time.

The non disjoint solution is defined as follows: Let C' be a set of classes and
let A = (J.cc Ac be the set of attributes. M = C is the model consisting of
these classes. Let R be the set of binary associations among two classes. Each
association R is defined as a tuple (C1, C2, M1, M1, M2, M2) where:

UML/OCL Aggressive Slicing Technique 181

Passenqel
Regular
Trlp
Adult
Ticket

(a) Slice for passengerSi- (b) Slice for ticketNumberPositive
ze and NonNegativeAge

Fig. 4. Slices of sl and s2

— (Cq € Cis a class.

— (9 € C is a class.

— my and my are non-negative integers € Z where m; and my correspond to
the lower bound of the multiplicity of each association end for C; and Cs,
respectively.

— M and Ms are non-negative integers or infinity (M7 € (ZT | {oc})) where
My and Mo corresponds to the upper bound of the multiplicity of each
association end for Cy and Cs, respectively, and M; > m;.

A Model M can be defined as a tuple: (C, A, R). A submodel S of model M =
(C, A, R) is another model (C", A’, R") such that:

-C'ecC

- R €ER

—AeA

ceC' — A, CA

— (C1,Co,m1, M1, ma, M2) € R — C1,C2 € C’

An OCL expression specifies the model entity for which the OCL expression
is defined. C'L represents the OCL invariants while C'L. are the clusters of con-
straints. The work list is defined as Wy which is the union of the constraint
support of all constraints in the cluster.

— Satisfiability (Strong/Weak): If the objects of a given class C' in a submodel
S are instantiated as per given expression in the cluster of OCL constraints
CL., then submodel S is satisfiable.

— Unsatisfiability: If there are two or more constraints whose interaction is
unsatisfiable, then submodel S is also unsatisfiable. It indicates that some
expression in the OCL invariant is violated and that the objects of the classes
cannot be instantiated according to the given OCL expression.

182 A. Shaikh, U.K. Wiil, and N. Memon

A class diagram can be unsatisfiable due to several reasons. First, it is pos-
sible that the model provides inconsistent conditions on the number of objects
of a given type. Inheritance hierarchies, multiplicities of association/aggregation
ends, and textual integrity constraints (e.g., Type::alllnstances() — size() = 7)
can restrict the possible number of objects of a class. Second, it is possible that
there are no valid values for one or more attributes of an object in the diagram.
Within a model, textual constraints provide the only source of restrictions on
the values of an attribute, e.g., self.x = 7. Finally, it is possible that the un-
satisfiability arises from a combination of both factors, e.g., the values of some
attributes require a certain number of objects to be created which contradicts
other restrictions.

To sum up, an unsatisfiable model either contains an unsatisfiable textual or
graphical constraint or an unsatisfiable interaction between one or more textual
or graphical constraints, i.e., the constraints can be satisfied on their own but
not simultaneously.

In a class diagram, there could be a possibility to have one or more relation-
ships between two classes, i.e., a class may have a relationship with itself and
there may be multiple relationships between two classes. Multiple links between
two classes or a link from one class to itself is called a ‘cycle’. For example, a
cycle exists between ‘Researcher’ and ‘Paper’ in Fig. Bl The ‘maximum label’ is
the highest upper bound multiplicity of the associations in a cycle. For example,
the maximum label is 1 for constraints restricting papers and 3 for constraints
restricting researchers.

Any cycle in the class diagram where the maximum label is 1 is inherently
satisfiable, and it will be called safe. However, cycles where the maximum label
> 2 can be unsatisfiable. Such cycles will be called unsafe. By “safe” we mean any
cycle where the maximum label is 1 and imposing a single constraint is inherently
satisfiable where the OCL expression is self.attrib op expression where attrib is an
attribute of a basic type (Boolean, Integer, Float, String) not constrained by any
other constraint, op is a relational operator (=, #, <, >, <, >) and expression is
a “safe” OCL expression which does not include any reference to attrib. The safe
expression is a side-effect free expression which cannot evaluate to the undefined
value in OCL (OclUndefined). This means that we do not allow divisions that can
cause a division-by-zero or collection operations which are undefined on empty
collections like first().

We present the non disjoint solution if slicing is applied over a UML model
without clustering the constraints (i.e., without step 2 in the UOST process).
There are three major steps that need to be considered as a solution:

— Find the common class in all slices of the Model (M).

— For each constraint, find the maximum of the lower bound (m1) multiplicities
relevant to the constraint from all associations of the common class. Set this
maximum as the base value. Base. =max(my) where (¢, Ca,m1, M1, M2, M2)
€R.

— Compare the base value using the expression given in each constraint.

UML/OCL Aggressive Slicing Technique 183

author Writes o ipt
Researcher Paper
name : String 1.2 0.1 |wordCount : int
isStudent : boolean : osterOnly : boolean
referee Reviews submission| " ¥

studentPaper: boolean

3 0.1

context Researcher inv NoSelfReviews: :
self.submission —>excludes(self.manuscript)

context Paper inv AuthorsOfStudentPaper:
self.studentPaper = self.author —>exists(x | x.isStudent)

context Paper inv NoStudentReviewers:
self.referee —>forAll(r | not r.isStudent)

context Paper inv LimitsOnStudentPapers:
Paper::alllnstances() —>exists(p | p.studentPaper) and
Paper::alllnstances() —>select(p | p.studentPaper) —>size() < 5

Fig. 5. UML/OCL class diagram of ‘Paper-Researcher’ [3]

The OCL constraints can be either textual OCL invariants or graphical re-
strictions like multiplicities of association ends. This property is important not
only because it can point out inconsistent models, but also because it can be
used to check other interesting properties like the redundancy of an integrity
constraint. For example, there could be a case where the invariants are con-
strained from the same class of the model. Figure [6] introduces a class diagram
of ‘model Company’ used to exemplify our non disjoint solution. There are two
constraints departmentEmployeeSize and projectEmployeeSize whose properties
need to be checked. Invariant departmentEmployeeSize is satisfiable however,
invariant projectEmployeeSize is unsatisfiable due to a violation of multiplicity.
After applying the slicing technique without clustering the invariants, we will
receive two submodels i.e., two non disjoint slices. Slice 1 will consist of class
‘Department’ and class ‘Employee’ for constraint departmentEmployeeSize. Sim-
ilarly, class ‘Project’ and class ‘Employee’ for invariant projectEmployeeSize will
be part of slice 2.

In this case, slice 1 is satisfiable, however, slice 2 is unsatisfiable. The def-
inition of the slicing procedure ensures that the property under verification is
unsatisfiable after partitioning because the overall interaction of the model is
unsatisfiable.

Initially, our non disjoint approach finds the common class in all slices of
model (M), i.e., class ‘Employee’. Secondly, the method finds the maximum of
minimum (max min) multiplicities from the common class (Employee) for each
constraint considering its navigation. For example, the navigation of invariant
“departmentEmployeeSize” is class ‘Department’ navigating to class ‘Employee’.
Therefore, the approach considers the multiplicity between the navigation of

184 A. Shaikh, U.K. Wiil, and N. Memon

Employee Workin
i 10 1.2 Depatment
name : String =
worklD : int name: ‘rlng
a budget : int
salary : int
14 1
Project
WokOn Controls
name : String
budget : int -
1.7 i

context Department inv departmentEmployeeSize :
self.employee()—>size() = 10

context Project inv projectEmployeeSize:
self.employee()—>size() > 15

Fig. 6. UML/OCL class diagram used as non disjoint solution (model Company)

class department and class employee, i.e., ‘10’ and ‘1..2’. As the constraint re-
stricts class employee, ‘10 is the base value for the “departmentEmployeeSize”
invariant. Similarly, ‘14’ is the base value for the navigation of class ‘Project’
and class ‘Employee’.

Finally, the method compares the base value (i.e., 10) for invariant “depart-
mentEmployeeSize” using the expression given in a constraint self.employee()—
size() = 10 whose interaction is satisfiable. However, invariant “projectEmploy-
eeSize” is violating the condition, i.e., using the expression self.employee()—
size() > 15 where 14 is not > 15. Hence, the overall interaction of the model is
unsatisfiable.

4 UOST Implementation in UMLtoCSP

We have implemented our proposed slicing technique (UOST) in UMLtoCSP [4]
in order to show the improvement of the efficiency in the verification process. Af-
ter developing UOST, we named our tool as UMLtoCSP(UOST). The execution
time of verification of an original UMLtoCSP depends mainly on the number of

classes/attributes and the parameters offered during the transformation to the
Constraint Satisfaction Problem (CSP). In case of small models, UMLtoCSP

UML/OCL Aggressive Slicing Technique 185

Table 2. Description of the examples

Example Classes Associations Attributes Invariants
Paper-Researcher 2 2 6 1
Coach 15 12 2 2
Tracking System 50 60 72 5
Script 1 100 110 122 2
Script 2 500 510 522 5
Script 3 1000 1010 1022 5

Table 3. Description of experimental results (UMLtoCSP)

Before Slicing (UMLtoCSP) After Slicing (UMLtoCSP UOST)
Classess Attributes OVT Attributes ST SVT TVT Speedup %
2 6 2506.55s 3 0.00s 0.421s 0.421s 99.98%
15 2 5008.76s 0 0.00s 0.178s 0.178s 99.99%
50 72 3605.35s 55 0.016s 0.031s 0.047s 99.99%
100 122 Time out 117 0.016s 0.032s 0.048s 99.99%
500 522 Time out 502 0.062s 0.028s 0.090s 99.99%
1000 1022 Time out 1012 0.282s 0.339s 0.621s 99.98%

OVT Original Verification Time ST Slicing Time
SVT Sliced Verification Time TVT Total Verification Time

provides quick results while for larger ones, the tool takes a huge of amount of
time. In order to evaluate the efficiency of our developed UOST approach in
UMLtoCSP, several models have been used (Table[2). UMLtoCSP takes a lot of
time to verify the instances of large examples, therefore, we set a time out to 1
hour 30 minutes which is equal to 5400 seconds. If UMLtoCSP does not verify
the model in the prescribed time, we will count this situation as Time out.

Table [B] summarizes the experimental results obtained by UMLtoCSP and
UMLtoCSP(UOST) running on an Intel Core 2 Duo 2.10 Ghz with 2Gb of
RAM where, the column OVT is the original verification time of UMLtoCSP,
column TVT is the total verification time of all slices of UMLtoCSP(UOST),
and column speedup shows the efficiency obtained after the implementation of
the slicing approach. We have used the following parameters for the experiments:
each class may have at most 4 instances, associations may have at most 1010
links and attributes may range from 0 to 1022. The speedup is calculated using
the equation {1 — (TVT/OVT)} % 100.

Figure [0 shows the object diagram for sl in the case of strong satisfiability
and Fig. 8 represents the object diagram for s2 in the case of weak satisfiability,
where there is no need to instantiate unused subclasses (i.e., AdultTicket and
ChildTicket). The object diagrams are generated using UMLtoCSP (UOST).

4.1 Limitations

Our proposed technique is limited and cannot partition the UML/OCL model
and abstract the attributes if the constraints are restricted from all classes using
all attributes of the class diagram. In this case, the technique will consider a

186 A. Shaikh, U.K. Wiil, and N. Memon

Trip1: Trip

TripRegularTriprravels Uses

RegularTripl: RegularTrip | | Passengerl: Passenger Coach1: Coach
-age=1 - noOfSeats = 1

Fig. 7. Submodel 1 (s1) object diagram for strong satisfiability

Tripd: Trip

TripRegularTripTravels Uses

RegularTripl: RegularTrip Passengerl: Passenger Coachl: Coach

/Lassenger‘l'ic ket CoachBookingOffice

Ticketl: Ticket BookingOfficel: BookingOffice
- number = 10

}as has

VendingMachinel: VendingMachine

Fig. 8. Submodel 2 (s2) for weak satisfiability

UML/OCL model as a single model and therefore, there will be no difference
between UMLtoCSP and UMLtoCSP(UOST). Table [describes the worst case
examples that cannot be sliced using UOST. The example Paper-Researcher is
a real world-example created manually which contains 2 classes, 6 attributes, 2
associations, and 4 invariants while example Company is script-generated and
has 100 classes, 100 attributes, 100 associations, and 100 invariants. In these
examples, partitioning cannot be done by the proposed UOST technique because
each instance of a class is restricted by an invariant.

5 UOST Implementation in Alloy

In this section, we present several examples in the Alloy specification in order
to prove that our developed slicing technique is neither tool dependent nor for-
malism dependent. We compare the verification time of several UML/OCL class

UML/OCL Aggressive Slicing Technique 187

Table 4. Worst case examples

Tool & Example Classes Associations Attr Inv NOS OVT

UMLtoCSP 2 2 5 4 0 0.040 s
(Paper-Researcher)

UMLtoCSP(UOST) 2 2 5 4 0 0036s
(Paper-Researcher)

UMLtoCSP 100 100 100 100 0 0.070 s
(Company)

UMLtoCSP(UOST) 100 100 100 100 0 0.078 s
(Company)

Attr Associatons Inv Invariants

NOS Number of Slices OVT Original Verification Time

Table 5. Description of the examples

Example Classes Associations Attributes Invariants
Atom-Molecule 2 2 3 2
University 4 3 8 5
ATM Machine 50 51 51 7
Script 1 100 110 122 2
Script 2 500 510 522 5
Script 3 1000 1010 1022 5

diagrams using the Alloy analyzer with and without the UOST technique. Ta-
ble Bl describes the set of benchmarks used for our comparison: the number of
classes, associations, invariants, and attributes. The benchmarks “Script” was
programmatically generated, in order to test large input models. Of these mod-
els, we consider the “Script” models to be the best possible scenarios for slicing
(large models with many attributes and very few constraints).

Tables [, [B, @ 00, and I summarize the experimental results obtained
using the Alloy analyzer before and after slicing, running on an Intel Core 2
Duo Processor 2.1Ghz with 2Gb of RAM. Each table represents the results as
described in the benchmark (Table Bl). The execution time is largely dependent
on the defined scope, therefore, in order to analyze the efficiency of verification,
the scope is limited to 7. The Alloy analyzer will examine all the examples with
up to 7 objects, and try to find one that violates the property. For example,
saying scope 7 means that the Alloy analyzer will check models whose top level
signatures have up to 7 instances.

All times are measured in milliseconds (ms). For each scope (before slicing),
the translation time (TT), solving time (ST), and the summation of the TT and
ST, which is the total execution time, are described. Similarly, for each scope
(after slicing) we measure the sliced translation time (STT), sliced solving time
(SST), and the summation of STT and SST. Similarly, the column speed up
shows the efficiency obtained after the implementation of the slicing approach.

Previously with no slicing, it took 820 ms (scope 7) for the execution of
the “ATM Machine” and 282161 ms (scope 7) for “Script 3”. Using the UOST

188 A. Shaikh, U.K. Wiil, and N. Memon

Table 6. Slicing results in Alloy for the Atom-Molecule example

Before Slicing After Slicing

Scope TT ST TT+ST STT SST STT+SST Speedup %
2 3ms 9ms 12ms 3ms 5ms 8ms 34%
3 Tms 8ms 15ms 3ms 6ms 9ms 40%
4 12ms 8ms 20ms 4ms 6ms 10ms 50%
5 17ms 10ms 27ms 4ms 9ms 13ms 52%
6 16ms 15ms 31lms 5ms 9ms 14ms 55%
7 19ms 15ms 34ms 6ms 9ms 15ms 56%

TT Translation Time ST Solving Time

STT Sliced Translation Time SST Sliced Solving Time

Table 7. Slicing results in Alloy for the University example

Before Slicing After Slicing

Scope TT ST TT+ST STT SST STT+SST Speedup %
2 7ms 10ms 17ms 3ms 5ms 8ms 53%
3 14ms 19ms 33ms 5ms 8ms 13ms 61%
4 28ms 20ms 48ms 7ms 10ms 17ms 62%
5 36ms 3lms 67ms 12ms 15ms 27ms 65%
6 45ms 50ms 95ms 17ms 15ms 32ms 67%
7 8lms 77ms 158ms 34ms 17ms 51ms 68%

TT Translation Time ST Solving Time

STT Sliced Translation Time SST Sliced Solving Time

Table 8. Slicing results in Alloy for the ATM Machine

Before Slicing After Slicing

Scope TT ST TT+ST STT SST STT+SST Speedup %
2 20ms 46ms 66ms 5ms 8ms 13ms 81%
3 83ms 91ms 174ms 9ms 11ms 20ms 89%
4 96ms 185ms 254ms 13ms 11ms 24ms 90%
5 158ms 173ms 332ms 20ms 12ms 32ms 90%
6 233ms 367ms 600ms 25ms 23ms 48ms 92%
7 325ms 495ms 820ms 30ms 28ms 58ms 93%

TT Translation Time ST Solving Time

STT Sliced Translation Time SST Sliced Solving Time

Table 9. Slicing results in Alloy for script 1

Before Slicing After Slicing

Scope TT ST TT+ST STT SST STT+SST Speedup %
2 110ms 133ms 243ms 7ms 9ms 16ms 93%
3 161ms 290ms 451ms 9ms 9ms 18ms 96%
4 224ms 591ms 815ms 14ms 12ms 26ms 97%
5 349ms 606ms 955ms 17ms 16ms 33ms 97%
6 589ms 1077ms 1666ms 27ms 25ms 52ms 97%
7 799ms 1392ms 2191ms 38ms 25ms 63ms 97%

TT Translation Time ST Solving Time

STT Sliced Translation Time SST Sliced Solving Time

UML/OCL Aggressive Slicing Technique 189

Table 10. Slicing results in Alloy for script 2

Before Slicing After Slicing

Scope T ST TT+ST STT SST STT+SST Speedup %
2 1839ms 3021ms 4860ms 6ms 7ms 13ms 99.7%
3 2567ms 7489ms 10056ms 11ms 8ms 19ms 99.8%
4 3374ms 8320ms 11694ms 14ms 9ms 23ms 99.8%
5 4326ms 21837ms 26163ms 18ms 14ms 32ms 99.8%
6 5231ms 32939ms 38170ms 25ms 14ms 39ms 99.8%
7 6477ms 59704ms 66181ms 35ms 16ms 51ms 99.9%

TT Translation Time ST Solving Time

STT Sliced Translation Time SST Sliced Solving Time

Table 11. Slicing results in Alloy for script 3

Before Slicing After Slicing

Scope TT ST TT+ST STT SST STT+SST Speedup %
2 9548ms 12941ms 22489ms 6ms 8ms 14ms 99.93%
3 9734ms 30041ms 39775ms 13ms 10ms 23ms 99.94%
4 12496ms 66861ms 79357ms 19ms 10ms 29ms 99.96%
5 15702ms 85001ms 100703ms 22ms 13ms 3bms 99.96%
6 19496ms 185118ms 204614ms 29ms 16ms 45ms 99.97%
7 23089ms 259072ms 282161ms 35ms 17ms 52ms 99.98%

TT Translation Time ST Solving Time

STT Sliced Translation Time SST Sliced Solving Time

approach, it takes only 58 ms (scope 7) for “ATM Machine” and 52 ms (scope
7) for “Script 3”. It is an improvement of 93% and 99.98%, respectively. In
addition, the improvement can also be achieved for larger scopes as well. For
instance, results for up to scope 50 can be achieved for the “ATM Machine” and
scope 35 for “Script”. However, without slicing we could only run the analysis
for limited scopes.

6 Related Work

In this section, we discuss existing work on model partitioning or slicing. Most
of the work in this area is done for UML Architectural Models, Model Slic-
ing, and Program Slicing which is limited to slicing only. Their goal of slicing
is to break larger programs or models into small submodels to reuse the re-
quired segments. However, research work on partitioning of UML/OCL models
in terms of verifiability is not found in the literature. Previously, we proposed a
slicing technique for models considering a UML class diagrams annotated with
unrestricted OCL constraints and a specific property to verify [I7]. The slicing
approach was based on disjoint slicing, clustering and the removal of trivially
satisfiable constraints. An implementation of the slicing technique has been de-
veloped in a UMLtoCSP tool. Experimental results demonstrate that slicing can
verify complex UML/OCL models and speed-up the verification time.

190 A. Shaikh, U.K. Wiil, and N. Memon

In contrast, this paper presents an aggressive slicing technique which can still
preserve the property under verification for non disjoint set of submodels. We
attempt to achieve the results in an external tool ‘Alloy’ in order to prove that the
proposed slicing technique is not limited to a single tool (i.e., UMLtoCSP) but
can also be used for other formal verification tools. The slicing procedure breaks
the original model into submodels (slices) which can be verified independently
and where irrelevant information has been abstracted. The definition of the
slicing procedure ensures that the property under verification is preserved after
partitioning.

6.1 UML Model Slicing

A theory of model slicing to support and maintain large UML models is mostly
discussed. Current approaches of model verification have an exponential worst-
case runtime. Context free slicing of the model summarizes static and structural
characteristics of a UML model. The term context points towards the location
of a particular object. It takes into account static and structural aspects of a
UML model and excludes the enclosure of interaction information [10]. Simi-
larly, to compute a slice of a class hierarchy of a program, it is necessary to
eliminate those slices that are unnecessary thereby ensuring that the behavior
of the programs would not be affected. This approach represents the criteria of
model abstraction [9].

One possible approach to manage the complexity of the UML metamodel
is to divide the metamodel into a set of small metamodels for each discussed
UML diagram type [I]. The proposed method defines a metamodel of a directed
multi-graph for a UML Metamodel Slicer. The slicer builds submetamodels for
a diagram with model elements. Another slicing technique for static and dy-
namic UML models presents the transformation of a UML architectural model
into a Model Dependency Graph (MDG). It also merges a different sequence of
diagrams with relevant information available in a class diagram [13].

6.2 Architectural Slicing

The concept of architectural slicing is used to remove irrelevant components and
connectors, so that the behavior of the slice is preserved [I9]. This research in-
troduces a new way of slicing. Architectural slicing is used to slice a specific part
of a system’s architecture. The sliced part is used to view higher level specifi-
cations. Similar to this approach, a dependency analysis technique is developed
which is based on the slicing criteria of an architectural specification as a set of
component parts [7]. The technique is named chaining. It supports the develop-
ment of software architecture by eliminating unnecessary parts of the system.
Furthermore, the notion of dynamic software architecture slicing (DSAS) sup-
ports software architecture analysis. This work is useful when a huge amount of
components is available. DSAS extracts the useful components of the software
architecture [12].

UML/OCL Aggressive Slicing Technique 191

6.3 Program Slicing

Program slicing [1816] techniques work on the code level, decomposing source
code automatically. In this research, a dataflow algorithm is presented for pro-
gram slices. A recursive program written in the Pascal language is used to com-
pute the slices. A comparable algorithm is developed to slice the hierarchies of
C++ programs. It takes C++ class and inheritance relations as an input and
eliminates all those data members, member functions, classes, and relationships
that are irrelevant ensuring that the program behavior is maintained. This work
gave us the motivation to reduce and eliminate those classes and relationships
which do not have any relation to the UML/OCL model [6].

However, to the best of our knowledge, none of the previous approaches con-
sider OCL constrains and none is oriented towards verification of UML/OCL
models. All the related work presented so far is not similar to our approach
because it is based on the slicing of UML models while our proposed slicing
techniques also cover verifiability of UML/OCL models. In contrast, we com-
pute a slice that includes only those classes which are necessary to preserve in
order to satisfy the OCL constraints that restrict the classes.

7 Conclusion and Future Work

In this paper, we have presented a slicing technique (UOST) to reduce the ver-
ification time in order to improve the efficiency of the verification process. The
approach accepts a UML/OCL model as input and automatically breaks it into
submodels where the overall model is satisfiable if all submodels are satisfiable.
We propose to (1) discard those classes from the model that do not restrict
any constraints and are not tightly coupled and (2) eliminate all irrelevant at-
tributes. The presented approach of model slicing can ease model analysis by
automatically identifying the parts of the model that are useful to satisfy the
properties in the model. During the verification process, complex models require
many resources (such as memory consumption and CPU time), making verifica-
tion unbearable with existing tools. UOST can help reduce the verification time.
We have implemented this approach in our developed tool UMLtoCSP and in
an external tool Alloy to provide a proof of concept.

As part of our future work, we plan to explore three research directions.
First, we plan to optimize our slicing approach by eliminating loosely coupled
superclasses and subclasses. Second, we optimize our UOST by discarding ag-
gregations and compositions with optional multiplicities. On the other hand, we
also plan to explore different sets of values for multiplicities such as a bus may
have [45, 55, 65] seats instead of 1..* seats. Third, we will investigate a feedback
technique that provides useful directions to a software engineer in case of unsat-
isfiability to allow the software engineer to focus her attention to the incorrect
submodels while ignoring the rest of the model.

192

A. Shaikh, U.K. Wiil, and N. Memon

References

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

. Bae, J.H., Lee, K., Chae, H.S.: Modularization of the UML Metamodel Using Model

Slicing. In: ITNG, pp. 1253-1254. IEEE Computer Society, Los Alamitos (2008)

. Cabot, J., Claris6, R.: UML/OCL Verification in Practice. In: MoDELS 2008.

Workshop on Challenges in MDE, ChaMDE 2008 (2008)

. Cabot, J., Clariso, R., Riera, D.: Papers and Researchers: An Example of an Un-

satisfiable UML/OCL Model,
http://gres.uoc.edu/UMLtoCSP/examples/Papers-Researchers.pdf

. Cabot, J., Clarisd, R., Riera, D.: UMLtoCSP: A Tool for the Formal Verification

of UML/OCL Models Using Constraint Programming. In: ASE 2007, pp. 547-548.
ACM, New York (2007)

. Cabot, J., Clarisé, R., Riera, D.: Verification of UML/OCL Class Diagrams Using

Constraint Programming. In: ICSTW 2008, pp. 73-80. IEEE Computer Society,
Los Alamitos (2008)

. Georg, G., Bieman, J., France, R.B.: Using Alloy and UML/OCL to Specify Run-

time Configuration Management: A case study. In: Workshop of the UML-Group

. Stafford, D.J.R.J.A., Wolf, A.L.: Chaining: A Software Architecture Dependence

Analysis Technique. Technical Report, University of Colorado, Department of
Computer Science (1997)

. Jackson, D.: Alloy: A Lightweight Object Modelling Notation. ACM Transactions

on Software Engineering and Methodology 11(2), 256-290 (2002)

. Choi, J.-D.; Field, J.H., Ramalingam, G., Tip, F.: Method and Apparatus for

Slicing Class Hierarchies, http://www.patentstorm.us/patents/6179491.html
Kagdi, H.H., Maletic, J.I., Sutton, A.: Context-free Slicing of UML Class Models.
In: ICSM 2005, pp. 635-638. IEEE Computer Society, Los Alamitos (2005)
Kellomaki, P.: Verification of Reactive Systems Using DisCo and PVS. In: Fitzger-
ald, J.S., Jones, C.B., Lucas, P. (eds.) FME 1997. LNCS, vol. 1313, pp. 589-604.
Springer, Heidelberg (1997)

Kim, T., Song, Y.-T., Chung, L., Huynh, D.T.: Dynamic Software Architecture
Slicing. In: COMPSAC, pp. 61-66. IEEE Computer Society, Los Alamitos (1999)
Lallchandani, J.T., Mall, R.: Slicing UML Architectural Models. In: ACM /
SIGSOFT SEN, vol. 33, pp. 1-9 (2008)

Lanubile, F., Visaggio, G.: Extracting Reusable Functions by Flow Graph-based
Program Slicing. IEEE Trans. Softw. Eng. 23(4), 246-259 (1997)

Ojala, V.: A Slicer for UML State Machines. Technical Report 25, Helsinki Uni-
versity of Technology (2007)

Qi Lu, J.Q., Zhang, F.: Program Slicing: Its Improved Algorithm and Application
in Verification. Journal of Computer Science and Technology 3, 29-39 (1988)
Shaikh, A., Claris6, R., Wiil, U.K., Memon, N.: Verification-driven Slicing of
UML/OCL Models. In: ASE, pp. 185-194 (2010)

Weiser.sk, M.: Program Slicing. IEEE Trans. Software Eng., 352-357 (1984)
Zhao, J.: Applying Alicing Technique to Software Architectures. CoRR,
¢s.SE/0105008 (2001)

http://gres.uoc.edu/UMLtoCSP/examples/Papers-Researchers.pdf
http://www.patentstorm.us/patents/6179491.html

	UOST: UML/OCL Aggressive Slicing Technique for Efficient Verification of Models
	Introduction
	UML/OCL Model Slicing
	The UOST Process
	Flowgraph: Step 1
	Applying UOST: Step 2, Step 3, and Step 4

	Non Disjoint Solution
	UOST Implementation in UMLtoCSP
	Limitations

	UOST Implementation in Alloy
	Related Work
	UML Model Slicing
	Architectural Slicing
	Program Slicing

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

