
UMLtoCSP (UOST): A Tool for Efficient Verification of
UML/OCL Class Diagrams Through Model Slicing

Asadullah Shaikh
The Maersk-McKinney Moller Institute University

of Southern Denmark (Denmark) and
Kulliyyah of Information and Communication

Technology (KICT) International Islamic
University (Malaysia)

ashaikh@mmmi.sdu.dk

Uffe Kock Wiil
The Maersk-McKinney Moller Institute

University of Southern Denmark (Denmark)
ukwiil@mmmi.sdu.dk

ABSTRACT
Model errors are a major concern in the paradigm of Model-
Driven Development (MDD) because of model transforma-
tions and code generation. It is important to detect model
errors before transformation as in the later stages it is harder
to trace and fix such errors. Formal verification tools and
techniques can check the correctness of a model, but their
high computational complexity can limit their scalability. In
this research, we present a tool named UMLtoCSP (UOST)
that uses a UML/OCL Slicing Technique (UOST) to verify
complex UML/OCL class diagram. The tool accepts UML
class diagrams annotated with OCL constraints as input,
breaks the original model m into m1, m2, m3,...,mn sub-
models while abstracting unnecessary model elements.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.4 [Software Engineering]: Software/Program
Verification—Model checking ; D.2.8 [Software Engineer-
ing]: Metrics—complexity measures, performance measures

Keywords
Verification Through Slicing, UML/OCLModel Verification,
Complex Model Verification

1. INTRODUCTION
The technology of Model Driven Development (MDD) is

growing day by day due the benefits of automatic model
transformation and code generation. In MDD, Unified Mod-
eling Language/Object Constraint Language (UML/OCL)
class diagrams play an important role for model design,
analysis, and transformation. Therefore, the verification
of UML/OCL class diagrams at earlier stages in the de-
velopment process is an essential task in order to check
the correctness of model properties, i.e., verification of a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’12/FSE-20, November 11–16, 2012, Cary, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1614-9/12/11 ...$15.00.

UML/OCL class diagram with several OCL integrity con-
straints. “We have focused on static structure diagrams that
describes the structure of a software system, UML class di-
agrams. Complex integrity constraints can be expressed in
OCL. In this context, the fundamental correctness property
of a model is satisfiability. Two different notions of satisfi-
ability can be checked - either weak satisfiability or strong
satisfiability. A class diagram is considered as weakly satis-
fiable if it is possible to create a legal instance/object of a
class diagram which is non-empty, i.e., it contains at least
one object from some class. Alternatively, strong satisfia-
bility is a more restrictive condition requiring that the legal
instance has at least one object from each class and a link
from each association” [2,4,11–14].

In the current literature, there are few formal verification
tools that check the correctness properties of models [3, 4,
8, 10], but typically these tools do not scale well. These
tools can only verify UML/OCL class diagrams to a certain
extent. For example, the tool UMLtoCSP [4] without our
added slicing procedure is unable to verify a model having 15
classes, 10 association, 27 attributes, and 6 OCL invariants.

Our UMLtoCSP (UOST) tool [15] uses a different ap-
proach called model slicing to make verification of complex
class diagram simpler. Afterwards, the tool uses bounded
verification for automatic verification. Initially, the class
diagram is partitioned into several independent submod-
els using a model slicing approach [12]. Secondly, all sub-
models are translated into Constraint Satisfaction Problem
(CSP) [5]. Finally, the tool relies on the ECLiPSe constraint
resolver [1] to compute whether the CSP has a solution or
not. In case the CSP has a solution, the object diagram of
each submodel will be generated with valid instances of the
class diagram. If any submodel of an original class diagram
cannot be verified, then the entire class diagram cannot be
verified. Similarly, the entire class diagram will be satisfi-
able if all its submodels are satisfiable. The generation of
objects proves the satisfiability.

The implemented approach in UMLtoCSP (UOST) is very
fast; it can verify models within a few seconds. For exam-
ple, a class diagram consisting of 15 classes, 10 associations,
27 attributes, and 6 OCL invariants could not be verified
by UMLtoCSP within 2 hours. However, the UMLtoCSP
(UOST) tool verified the same class diagram in 0.02 seconds.
Our approach provides two main advantages over other sim-
ilar verification tools. First of all, slicing is fully automated
and can be implemented in any tool because it is neither tool

1

Figure 1: UMLtoCSP (UOST) execution flow.

dependent nor formalism dependent. Secondly, it points to
the specific OCL constraint(s) that causes a UML/OCL class
diagram to be unsatisfiable. For example, the technique de-
tects unsatisfiable submodels and their integrity constraints
among the complex hierarchy of an entire UML/OCL class
diagram.

2. UMLTOCSP (UOST) FEATURES
The basic approach behind the UMLtoCSP (UOST) tool

is a model slicing technique that enables efficient verification
of UML/OCL class diagrams. The tool can verify different
sets of properties for UML/OCL class diagrams with disjoint
and non-disjoint sets of slicing. The features strong satisfia-
bility and weak satisfiability are same as in UMLtoCSP [4].
However, other new features in UMLtoCSP (UOST) are:

Strong satisfiability: the class diagram should have a
legal instance for at least one object from each class and a
link from each association.

Weak satisfiability: the class diagram should have a
legal instance/object which is non-empty, i.e., it contains at
least one object from some class.

Remove attributes: for weak or strong satisfiability,
unrestricted attributes can be removed from the class dia-
gram.

Non-disjoint slicing: slicing of a class diagram with
non-disjoint sets of submodels.

Disjoint slicing: slicing of a class diagram with disjoint
sets of submodels.

Show specific invariants: detection of failing submodel(s)
in disjoint slicing and a specific unsatisfiable invariant(s) in
non disjoint slicing .

3. TOOL USAGE
In this section, we demonstrate the basic flow of the tool

with the help of a running example. Figure 1 illustrates the
execution flow of the tool. UMLtoCSP (UOST) uses several
back-end services, for example, MDR [6] is used to parse the
XMI files of the model slices. The Dresden OCL toolkit [7]
is used to process the OCL constraints along with ECLiPSe
solver in order to detect valid instances of a given input.

Graphviz [9] is used to display the object diagram for all
valid instances. In each verification tool, there is an input,
a process, and an output (IPO). Therefore, we illustrate the
working of the UMLtoCSP (UOST) through these general
terms.

First of all, the user provides a UML/OCL class diagram
as input in the form of an XMI file along with a text file spec-
ifying OCL constraints. Once the class diagram is loaded
into memory, the user needs to provide a list of properties
to be verified. The tool breaks the XMI file (class diagram)
into several independent XMI files (slices of the input class
diagram). After slicing, the user can set certain limits of the
search space for a given input, i.e., a class diagram. This
entire slicing process is automatic and invisible to the user.
The next stage is the translation of the class diagram into
a CSP, i.e., the process. Once the translation is done, the
tool provides the output wether a valid instance of a given
class diagram exists or not. If it does, the object will be
generated for each slice. However, if it does not, the tool
highlights the failing submodel with its corresponding OCL
invariants. With the help of ‘Show Specific Invariants’, it
is possible to highlight the specific failing constraints. The
following section is comprised of the tool usage through a
running example in order to provide a clear description of
IPO.

3.1 Running example
Figure 2 shows the running example ‘model Coach’ that

will be used to show the output of the tool. The ‘model
Coach’ class diagram is annotated with 5 OCL invariants.
First of all, the user needs to load the class diagram and OCL
invariants into memory. Secondly, the approach identifies
classes referenced by a given constraint. Such classes must
be grouped and analyzed within the scope of the same slice.
The process avoids repetition of same slices. UMLtoCSP
(UOST) identifies OCL invariants and groups them if they
restrict the same model elements. This is called clustering
of constraints (Constraint Support). Thirdly, each cluster
is passed to the eclipse solver for the translation into CSP.
Figure 3 explores the translation process. However, before
translating into CSP, it is important to select the property

2

context Coach inv MinCoachSize:
self.noOfSeats ≥ 10

context Trip inv IdUnique:
Trip::allInstances() −>isUnique (a | a.id)

context Person inv PersonSize:
Person::allInstances() −>size() = 1

context Person inv PersonsTicket:
Person::allInstances() −>isUnique (t | t.tickets.number)

context Department inv DeptartmentSize:
Department::allInstances() −>size() = 1

Figure 2: UML/OCL class diagram used as running example (model Coach).

Figure 3: UMLtoCSP (UOST) translation process.

being verified. The next stage is the translation into CSP
of each submodel. For ‘model Coach’ class diagram, in case
of non-disjoint slicing, we will receive three submodels with
strong satisfiability. However, in case of disjoint slicing two
submodels will be received with strong satisfiability.

After the translation into CSP, if the solution exists, the
tool will generate the respective object diagram for each sub-
model. For example, Figure 4 shows the desired output of
the tool, i.e., the number of satisfiable submodels. Figure 5
shows the object diagram of slice 3. In the output screen,

each submodel is shown with its corresponding invariants
along with total submodel (slicing) time and total verifica-
tion time.

If there is a complex class diagram (with hundreds of
classes and invariants) having one of its properties failed,
then UMLtoCSP (UOST) highlights the failed slice along
with specific invariants. This new research approach de-
tects unsatisfiable submodels and their integrity constraints
among the complex hierarchy of an entire UML/OCL class
diagram. The software engineers can therefore focus their
revision efforts on the incorrect submodels while ignoring the
rest of the model. The upper part of figure 6 highlights the
unsatisfiable submodel (Submodel 1) along with its failed
OCL constraints, i.e., two invariants, whereas, in the lower
part the specific unsatisfiable constraint is shown.

4. CONCLUSIONS
This paper presents a research tool called UMLtoCSP

(UOST) that can verify properties of UML class diagrams
even when the class diagram is complex having hundreds of
classes, attributes, associations, and invariants. The model
slicing approach is implemented in the tool that helps to
improve the efficiency of the verification process. Thanks to
the slicing procedure UML/OCL class diagrams that were
not verifiable before are now verifiable. The process of slic-
ing and verification is fully automatic and it also provides
constructive feedback if the class diagram is unsatisfiable.
UMLtoCSP (UOST) detects the specific failed constraints
and therefore, the designers only need to concentrate on

3

Figure 4: Slices with invariants.

Figure 5: Object diagram of slice 3.

specific unsatisfiable properties while ignoring the rest of
complex hierarchy.

5. REFERENCES
[1] K. R. Apt and M. G. Wallace. Constraint Logic

Programming using ECLiPSe. Cambridge University
Press, Cambridge, UK, 2007.

[2] M. Balaban and A. Maraee. A UML-based method for
deciding finite satisfiability in Description Logics. In
DL’2008, volume 353 of CEUR Workshop Proceedings.
CEUR-WS.org, 2008.

[3] A. Brucker and B. Wolff. Hol-ocl: A formal proof
environment for uml /ocl. In Fundamental Approaches
to Software Engineering, Lecture Notes in Computer
Science, pages 97–100. 2008.

[4] J. Cabot, R. Clarisó, and D. Riera. UMLtoCSP: a tool
for the formal verification of UML/OCL models using
constraint programming. In ASE’2007, pages 547–548.
ACM, 2007.

[5] J. Cabot, R. Clarisó, and D. Riera. Verification of
uml/ocl class diagrams using constraint programming.
In Proceedings of the 2008 IEEE International

Figure 6: UMLtoCSP (UOST) output in case of un-
satisfiable class diagram.

Conference on Software Testing Verification and
Validation Workshop, pages 73–80. IEEE Computer
Society, 2008.

[6] J. Cabot, R. Clarisó, and D. Riera. Verification of
uml/ocl class diagrams using constraint programming.
In ICSTW ’08, pages 73–80. IEEE Computer Society,
2008.

[7] B. Demuth. The Dresden OCL toolkit and its role in
Information Systems development. In ISD’2004,
Vilnius, Lithuania, 2004.

[8] M. Gogolla, J. Bohling, and M. Richters. Validation of
uml and ocl models by automatic snapshot generation.
In In UML 2003, pages 265–279. Springer, 2003.

[9] Graphviz. Graph visualization software.
http://www.graphviz.org.

[10] D. Jackson. Alloy: a lightweight object modelling
notation. ACM Transactions on Software Engineering
and Methodology, 11(2):256–290, 2002.

[11] A. Queralt and E. Teniente. Reasoning on UML class
diagrams with OCL constraints. In ER’2006, volume
4215 of LNCS, pages 497–512. Springer-Verlag, 2006.

[12] A. Shaikh, R. Clarisó, U. K. Wiil, and N. Memon.
Verification-driven slicing of uml/ocl models. In ASE,
pages 185–194, 2010.

[13] A. Shaikh, U. K. Wiil, and N. Memon. Evaluation of
tools and slicing techniques for efficient verification of
uml/ocl class diagrams. Adv. Soft. Eng.,
2011:5:1–5:18, 2011.

[14] A. Shaikh, U. K. Wiil, and N. Memon. Uost: Uml/ocl
aggressive slicing technique for efficient verification of
models. In SAM 2010, volume 6598 of LNCS, pages
173–192. Springer-Verlag Berlin Heidelberg, 2011.

[15] UMLtoCSP(UOST). A tool for efficient verification of
uml/ocl class diagrams through model slicing.
http://asadshaikh.com/UMLtoCSP_UOST.

4

