
The Model-driven Architecture in an Industrial
Environment

Asadullah Shaikh∗, Sheeraz Ali†, Jawed Ahmed† and Muniba Shaikh‡
∗Universitat Oberta de Catalunya (Spain)

Email: ashaikh@uoc.edu
†Cursor Software Solutions (UAE)

Email: sheeraz@cursorsoft.net
†Cursor Software Solutions (Pakistan)
Email: jawed.ahmed@cursorsoft.net

‡Quaid-e-Awam University of Engineering
and Technology (Pakistan)

Email: hina04 muet@hotmail.com

Abstract—Model-driven Architecture (MDA) is a development
methodology that helps designers to define and communicate
a solution. It is becoming popular day by day due to its
transformation techniques from one model to another. In an
industrial environment such as software and Business, MDA
can play a major role in the development of software/embedded
systems. In this peace of research we are considering that how
software development in the industrial environment is affected
by the models and transformations. As a result of this, a
literature study is being done to highlight some real time models
and transformations in the industrial environment. Couple of
transformations have been investigated and explained with its
benefits and use.

1

I. INTRODUCTION

The software development is mainly focused on embedded
systems in the industrial environment, such as business, soft-
ware etc. Because they are essential for popular functioning
of a system. The embedded systems are small, electronic, and
encapsulated with hardware device; they work as a component
of the huge system. Embedded systems perform an important
role in improving the capability and performance of the real
time system [1].

In the software development methodology, Service Ori-
ented Architecture (SOA) [15] [12] and MDA focuses on
embedded systems that have been developed mostly through
function-based analysis and with procedural languages like
C for implementation purposes. There exists such tools that
transforms the model automatically however, there is a need
for tools that support the component-based implementation
of target systems in an object-oriented methodology for a
specific use. For example, some times the software systems are
complicated and the industry requires a single component of
that software system. At this point, an efficient tool is required
that extracts the particular chunk or component in order to

978-1-4244-8003-6/10/$26.00 c©2010 IEEE

use in embedded systems. Model-driven Architecture (MDA)
is one such process, and it is used in the industry. This process
enables services for defining software models and facilitating
transformations between different model types.

Apart from this, MDA reduces gap among modeling en-
vironments of different types, it shifts graphical models into
code towards writing transformation rules for your models.
Hence, code gets automatically generated and every time there
is change in the model or in code, both views are synchronous.
The purpose of this paper is to submit a method which states
the importance of current MDA value in the industry to the
people with basic knowledge in software engineering, and to
the software designers that consider introducing MDA into
their organization. We have considered few transformation that
convert the UML Model into Constraint Satisfaction Problem
(CSP).

II. MODEL-DRIVEN ARCHITECTURE

Object Management Group (OMG) has been the leading
carrier of interoperability, platform independence and flexible
solutions. Successful application of CORBA, IIOP, IDL, and
UML in the industry brought credit to OMG for providing plat-
form neutral, interoperable, flexible solutions. Model-Driven
Architecture (MDA) is the framework for next generation
software development it contains a set of standards, like
Meta Object Facility (MOF), XML Metadata Interchange
(XMI), and UML. Apart from this, MDA’s goal is to facilitate
interoperability between different platforms in distributed and
heterogeneous environments, by using models within the entire
development process [3]. According to OMG specifications,
MDA separates the work into development of two different
types of models: Platform-independent Model (PIM) and
Platform-Specific Model (PSM). To generate a model out of
another, appropriate model transformations are to be applied.
In order to better understand these concepts and how they are
used in MDA framework, it is necessary to formerly explain
these concepts.

A. Platform-independent Model

A Platform-independent Model (PIM) does not contain
any impurities of technical details. It focuses on capturing
the concepts available in the domain; it is typically the
first development step, once initial requirements analysis is
finished[2]. A PIM manifests the entities present in domain
and the relationships identified among them, like conceptual
model in the case of a database design. All details belonging
to the final plat-form on which the desired system would be
implemented and/or deployed are not incorporated at this level.

A PIM could possibly be an input to next phase or it could
be an output of a previous phase. It is common to have more
than one implementations of the same business model due
to variety of reasons. As such, development of PIM aims at
developing the model that best describes the business entities
and its processes free from the specifics of the deployment
technologies like J2EE, .NET, C#, Oracle, etc.

B. Platform-specific Model

Platform-specific Model (PSM) is the result of applying
proper transformation rules on PIM. The transformation rules
exactly describe how and what platform-specific details are
to be added to PIM and reflect the same as an application
model. This model contains the peculiarities of a target imple-
mentation technology like what database platform the model
would be deployed and/or target language details, e.g. which
entities would act like entity or session beans in a J2EE
implementation. The availability of transformation tools for
required platforms is important for converting into PSM from
PIM. Its possible with UML 2.0, to integrate the behavior in
object diagrams which facilitates generation of more concrete
code models. At present the availability and capability of such
tools is limited, but after further advancements in this field,the
situation will be change [3].

C. Model Transformation

Model transformation is a process of converting graphi-
cal constructs into another model with the same semantics.
Automation of model transformation gives a higher level of
correctness and also gives surety of accurate translation of
functionality through models. The tools which are currently
available, make possible to generate code stubs from the class
diagram models. We have used several transformations in
order to show the conversion of one model to another and its
usage in the industry. From platform-independent model, the
transformation engine produces the platform-specific model
applying certain transformation rules as shown in Figure 1.
The transformation rules command the transformation engine
that which transformations to apply to the models to generate
the source code. These rules comprises of the arrangement of
the produced code, the language and the implementation of
the model assemble, i.e. classes etc. Transformation rules also
comprises of the platform-specific view and limitation [10].

Fig. 1: High-level Description of PIM Transformations.

Fig. 2: Transformation From the Input Model to the Output Model.

III. METHODOLOGY

The methodology defines a framework which is used in
this paper. A framework states a structure for describing a
set of concepts, methods, technologies, that are necessary
for a complete product design and manufacturing process.
In this paper, both above concepts are complemented from a
taxonomical and an industrial point of view respectively. This
framework helps to organize the information and to provide an
outline for the paper. The framework helps the reader/designer
to understand and interpret the information contained in the
paper. This framework is used for describing the different
models and their transformations into other models. Figure
2 describes the general framework for model transformations.
These models could be visualized as nodes and the transfor-
mations as edges. Each node can have several attributes or be
located in a specific phase.

This framework is model oriented rather than process ori-
ented and focuses on the models within the development
phases. A set of an attribute and a domain is applicable
for each model. As it is possible that certain models may

Fig. 3: Transformation From the Output Model to Another Output
Model.

have common attributes, so it can be represented as a set
of boundaries as shown in Figure 3. The transformations are
unique edges, characterized by the tool to be used for them
and attributes, like automation level, usage/maturity level can
be linked to each other. It helps to analyse different paths inde-
pendently for performing the transformations. Characteristics
like supportability, maintain- ability, and portability could arise
through the graph. Figure 3 shows how the graph is divided
in two domains, one is transformation of AB, i.e. Step 1, and
the other domain is transformation of BC or AC i.e. Step 2.
Here Model A and Model B belong to the analysis phase, and
Model C belongs to the design phase. Transformation BC is
required in order to transform Model B into Model C.

For the framework, following parameters are concerned.
These parameters are applicable to input and output model.

1) Design Tools: Software tools that are used for the
implementation of input model.

2) Notation: A notation is a system of signs representing
unique things. For high level computer languages, the
notation is defined by syntax. For domain–oriented de-
velopment, the domain terminology defines the domain
notation [6]. The notation is classified as being either
graphical or textual, and either standardized or unstan-
dardized. There are few types of notation such Graphical
Notation, Textual Notation, Standardized Notation and
Unstandardized Notation

3) Level of Implementation: It is a method applied over
models upon the level of detail or amount of information
contained by them. For example, level of abstraction
by which a system can be used fluently. Normally, the
lower-level details are easily visible as compared to
higher-level because of less complications. In this paper
certain level of implementations are mapped in order
to show the transformations in a more feasible way.
The levels of implementation for this paper are: (1)
Platform-independent Model (PIM) and (2) Platform-

specific Model (PSM).
4) Application of Transformations and its Usage: The ap-

plication of transformation describes the current status
of the model, according to its usage in the industry i.e
software or business.

IV. RESULTS OBTAINED FROM STEP 1

The process of results begins with collection and analyza-
tion of the set of requirements given by the client. In this phase
an overall architecture of the target system functionality is
defined and module sketches are constructed which depicts the
breakdown of the system into discrete parts of functionality.
This specifies different objects of the overall system and
clearly shows how they interact and collaborate.

The first transformation is based on sequence diagram that
explains how groups of objects work together in achieving
some system behavior. Using the transformation, sequence
diagram contains one main object for business industry. From
this component the industry can extract useful information in
order to manufacture the desired system. The transformation
helps to generate code automatically rather than implementing
it manually. It is easy to draw a sequence diagram and generate
the code without any extra time.

The hardware and the software components are identified
and their requirements for each component are described.
Mostly, these sub parts are provided by a third party manufac-
turer who specializes in building these smaller systems. This
saves the cost of carrying out a whole independent activity
and resource utilization; also these subsystems are tested and
designed specifically according to car manufacturer’s require-
ments.

A. System Sequence Diagram into JAVA

Input Model: System Sequence Diagram (SSD) has a
number of different modes that effect its operation. These
modes and the transitions between them can be illustrated
with objects that work together. Figure 4 shows the sequence
diagram.

1) Design Tools: Rational Rose for the design of sequence
diagram [8].

2) Notation: Graphical based notation.
3) Level of Implementation: Sequence diagram is mostly

used on PIM level.
4) Application of Transformations and its Usage: Sequence

diagram is used in business industry for defining the
sequence of the system. This model can be transformed
in to PSM i.e JAVA code.

Output Model: JAVA Source Code: The output model is
JAVA source code, which can be used to design the system
as per sequence is given however, it can save the time of the
developer. The sequence diagram focuses on entire system.
Business industry can generate the code and use the specific
component in to their design.

1) Design Tools: BOUML [4].
2) Notation: Code based.
3) Level of Implementation: Code is used on PSM level.

Fig. 4: Sequence Diagram of Tele-WoundTM Application [14].

Fig. 5: Component of Tele-WoundTM Application [14].

4) Application of Transformations and its Usage: It is used
in business Industry.

B. Component Diagram into C++ Code

Input Model: Component Diagram has a number of dif-
ferent components of the system. The Component diagram of
Tele-Wound represents the components of the tele-medicine
application. Doctor’s component represents the doctor’s activ-
ities of an application. It also make contact with the external
email server for receiving emails. The method read emails()
request the email from the email pop3 server and give it back
to doctors component where the doctor’s component receive
all emails and separate patient’s images and text descriptions
and save it into databases. Furthermore, the component also
need patients records so that the doctors can be able to treat
their patients after viewing and analyzing their previous history
records, fetch record() will fetch the records from database
to the doctors components by using web services. Figure 5
presents the component diagram of the tele-medicine health
care system [13].

1) Design Tools: Microsoft Visio.
2) Notation: Graphical based notation.
3) Level of Implementation: Component diagram is mostly

used on PIM level.

Fig. 6: UML/OCL Class Diagram (Atom-Molecule).

context Molecule inv InertNobleGases:
self.weight ≥ 100

TABLE I: OCL Constraint (Atom-Molecule) class diagram.

4) Application of Transformations and its Usage: Compo-
nent diagram is used in business/software industry for
defining the components of the system. This model can
be transformed in to PSM i.e C++ code.

Output Model: C++ Code: The output model is C++
source code, which can be used in system code. It will be
component based therefore, each component of the system will
be different and can be used independently in any software
product.

1) Design Tools: BOUML [4].
2) Notation: Code based
3) Level of Implementation: Code is used on PSM level.
4) Application of Transformations and its Usage: It is used

in business/software industry.

V. RESULTS OBTAINED FROM STEP 2
In the step 2 results, we have considered suitable algorithms

for the functional requirements. Modern design packages
and tools support for the creation of functionality models
and evaluate functionality through object diagrams. Object
diagrams are designed and evaluated with the help of UML
class diagrams. The end result is a set of object diagram which
is generated using Constraint Satisfaction Solver ECLiPSe

[16]. Tools like UMLtoCSP [5], USE [7], Alloy [9] supports
the transformations of UML class diagrams into object dia-
gram using several transformation techniques.

A. UML/OCL Model to Object Diagram Using CSP

Input Model: UML/OCL models are designed in order to
provide a high-level description of a software system which
can be used as a piece of documentation or as an intermediate
step in the software development process. In the context of
Model Driven Development (MDD) and MDA, the need for
correct specifications arises because the whole technology is
based on model transformation. This transformation shows
model correctness in terms of verifiability. Figure 6 shows the
class diagram of Atom-Molecule while Table I represents the
OCL constraints of Atom-Molecule class diagram. After the
verification, this model can be used in any software product
based on the requirements of the software industry.

1) Design Tools: ArgoUML for the design of UML class
diagram [2] and any text editor for OCL [11] constraints.

2) Notation: Graphical based notation.
3) Level of Implementation: Class diagram used for PIM

level and OCL invariants on PSM level.

Fig. 7: Object Diagram (Atom-Molecule).

4) Application of Transformations and its Usage: Class
diagram is used in software industry for defining the
high level design. The model can be transformed into
PSM and PIM.

Output Model: CSP Code and Object Diagram: The
output model is CSP code and object diagram, which is
verified and therefore, can be used to the components of the
software product.

1) Design Tools: UMLtoCSP [5].
2) Notation: Code based and graphical based.
3) Level of Implementation: Class diagram used for PIM

level and CSP code on PSM level.
4) Application of Transformations and its Usage: It is used

in software industry. Figure 7 shows the object diagram
of Atom-Molecule as a verified model.

VI. TESTING IN MODEL-DRIVEN ARCHITECTURES

Testing of PIMs needs a systems approach, it can be
done during the initial stages while mapping into a platform,
integration, and through subsequent reuse. In most cases, white
box testing is used for PIM behavior in the development
environment as well as the target platform.

Initially, the methods verifies the internals of a PIM for
correctness as it executes, solving the observability and con-
trollability obstacles. Following is the junit test code sample
used for testing the PIM and PSM models.

import j u n i t . f ramework . T e s t C a s e ;
p u b l i c c l a s s BankEJBimplement
s e s s i o n B e a n ex tends T e s t C a s e {

p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {}

p u b l i c BankEJBimplement s e s s i o n B e a n S t r i n g name) {
super (name) ;

}

p r o t e c t e d void se tUp () throws E x c e p t i o n {
super . se tUp () ;

}

p r o t e c t e d void tearDown () throws E x c e p t i o n {
super . tearDown () ;

}
p u b l i c vo id s a y T e s t ()
{

BankEJB t e s t = new BankEJB () ;
a s s e r t N u l l (” S u c c e s s f u l ! ” , t e s t . s a y T e s t ()) ; }

In order to test the entire model, we have to make a separate
test cases for each class. The results will be generated once
the test cases are executed.

VII. CONCLUSION

In this paper, we have presented that how MDA can be used
in an industrial environment. For that purpose, we have shown
few transformations widely used in the industry. Through these
transformations, following benefits can be achieved:

1) Time-to-market and management costs both can be
reduced: designers and developers can work on multiple
projects at a time.

2) Automatic conversion or transformation of design into
source code minimizes the risks that can cause by the
loss of coding or personnel working on the project.

3) These transformation might generate the testing pro-
cesses that are less time-consuming and less demanding.

4) Testing is more easier in Model-driven Architecture as
it supports both white and black box testing. If the
transformation is component-based, it would be more
easier to test rather than entire system.

As a future research, we want explore several projects
involving complex methodologies of MDA to observe the
results. Few possible research could be Verification and Vali-
dation of models through transformations.

REFERENCES

[1] M. Amirijoo, J. Hansson, S. Gunnarsson, and S. H. Son. Quantifying
and suppressing the measurement disturbance in feedback controlled
real-time systems. Real-Time Systems, 40(1):44–76, 2008.

[2] ArgoUML. Argouml. http://argouml.tigris.org/.
[3] R. Bendraou, S. Bouzitouna, and M.-P. Gervais. From mda platform-

specific model to code generation: Coupling of rm-odp and uml action
semantics standards. In Software Engineering Research and Practice,
pages 407–416, 2004.

[4] BOUML. Bouml. http://bouml.free.fr/.
[5] J. Cabot, R. Clarisó, and D. Riera. UMLtoCSP: a tool for the formal

verification of UML/OCL models using constraint programming. In
ASE’2007, pages 547–548. ACM, 2007.

[6] K. Czarnecki and S. Helsen. Feature-based survey of model transfor-
mation approaches. IBM Syst. J., 45(3):621–645, 2006.

[7] M. Gogolla, J. Bohling, and M. Richters. Validating UML and OCL
models in USE by automatic snapshot generation. 4(4):386–398, 2005.

[8] IBM. Rational rose enterprise. http://www.developers.net/ibmshowcase/
view/249.

[9] D. Jackson, I. Schechter, and H. Shlyahter. Alcoa: the alloy constraint
analyzer. In Proc. of the 22nd Int. Conf. on Software Engineer-
ing(ICSE’00), pages 730–733, New York, NY, USA, 2000.

[10] Model-driven Archiecture. An introduction to mda. http://www-128.
ibm.com/developerworks/rational/library/apr05/brown/.

[11] OMG. Object constraint language specification. http://www.omg.org/
technology/documents/formal/ocl.htm.

[12] A. Shaikh, M. Memon, N. Memon, and M. Misbahuddin. The role of ser-
vice oriented architecture in telemedicine healthcare system. Complex,
Intelligent and Software Intensive Systems, International Conference,
0:208–214, 2009.

[13] A. Shaikh, M. Misbahuddin, and M. S. Memon. A system design for a
telemedicine health care system. In IMTIC, pages 295–305, 2008.

[14] A. Shaikh and M. Muhammad. A system design for a tele-medicine
health care system, 2007.

[15] A. Shaikh, A. Soomro, S. Ali, and N. Memon. The security aspects in
web-based architectural design using service oriented architecture. In-
formation Visualisation, International Conference on, 0:461–466, 2009.

[16] The ECLiPSe Constraint Programming System. http://www.
eclipse-clp.org, mar 2007. version 5.10.

