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Abstract. In recent years, wireless ad hoc networks (WANETs) have be-
come very popular due to their wide range of applications and their abil-
ity to be deployed under normal and harsh conditions while supporting
high data rates. Although many intrusion detection and trust-based sys-
tems have been developed to protect ad hoc networks against misbehav-
iors such as rushing attacks, query-flood attacks, and selfishness of nodes,
these defense mechanisms are still not able to detect protocol compliant
attacks called Jellyfish (JF) attacks. They target closed-loop flows such
as TCP that are responsive to network conditions like delay and packet
losses and can easily partition the network. In this paper, we introduce
a security scheme called JAM (Jellyfish Attacks Mitigator) which can be
used to detect and mitigate Jellyfish attacks in ad hoc networks.

Keywords: Wireless Ad hoc Networks, Security, Denial of Service, and
Jellyfish Attacks.

1 Introduction

Significant progress has been made in securing ad hoc networks by developing
secure routing protocols [1,2] that ensure different security concepts such as au-
thentication and data integrity. Moreover, intrusion detection and trust-based
systems [3, 4, 5, 6, 7, 8] have been developed to protect WANETs against misbe-
haviors such as rushing attack, query-flood attacks, and selfish behaviors. Yet,
most of the defense mechanisms are not able to detect a set of protocol compliant
attacks called jellyfish (JF) attacks [9].

Similar to a jellyfish which is difficult to be detected until after the sting,
jellyfish attacks in ad hoc networks are also hard to detect because they conform
to all existing protocol specifications. Jellyfish attackers (JF nodes) can severely
reduce the goodput of all traversing closed-loop flows to near zero by periodically
dropping a small fraction of packets (JFPeriodicDroppingAttack), reordering
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them (JFReorderAttack), or delaying them (JFDelayAttack). A JF attack
can severely degrade the performance of a network by preventing long-range
communication and thus partitioning the network. For further details about
the types of jellyfish attacks, please refer to the work of Aad et al. [9] or the
appendix section. In this paper, we present a scheme called JAM [10] to mitigate
jellyfish attacks. This scheme detects and circumvents malicious nodes and thus
successfully establish routes free from malicious nodes.

2 Existing Schemes

Nadeem and Howarth [3] introduce an anomaly-based intrusion detection system
(ABIDS). They introduce an ABIDS based on chi-square for intrusion detection.
However, this technique relies on a Centralized Entity (CE) to detect anomalies
which is not practical in WANETs due to the distributed nature of it. Pirz-
ada and McDonald [5] present a trust-based mechanism (TBM) for establishing
and managing trust in pure ad-hoc networks where no CE exists and the nodes
are not required to be pre-configured. The main drawback of their approach
is that the detected malicious nodes are not penalized and isolated from the
network. Zouridaki et al. [7] introduce robust cooperative trust establishment
schemes in Mobile Ad hoc Networks (MANETs) called E-Hermes. The scheme
can successfully but slowly identify malicious nodes. Moreover, the destination
must acknowledge (ACK) each packet and intermediate nodes must set timers.
They incur a large overhead by sending a message authentication code (MAC)
for each intermediate node on a route to assure packets’ integrity. De Rango and
Marano [6] improve the usage of a well-known secure AODV routing protocol
(SAODV) [1] in terms of reducing the number of applied signatures and their
verification by intermediate nodes in order to achieve a longer network life.

All the above mentioned trust models are not suitable for detecting jellyfish
attacks due to the nature of TCP flows that are responsive to network conditions
such as delay and packet loss. A JF node attacks TCP flows for a short time to
force them to enter the slow-start state, during which only one segment is sent
and the RTO is too high. In such cases, the above mentioned TBMs fail because
they would not penalize a node that drops only one packet every few seconds.

3 Proposed Detection Model

There are some notations which have been used to describe our model. Some of
the commonly used notations are formulated in Table 1. In our proposed model,
a general wireless ad-hoc network is considered. MAC layer acknowledgments
are sent by a destination node to notify the source that the sent frame has
been successfully received. When a MAC ACK is not received, the source has
to resend the unacknowledged frame. Moreover, nodes are considered to operate
in promiscuous mode as well. Additionally, a secure AODV protocol such as
SAODV for authentication and message integrity is supposed to be working. As
we consider intermediate nodes to be attackers, source and destination nodes
are assumed to be trusted.
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Table 1. Notations used in JAM

Symbol Definition

RREQ Route request packet
RREP Route reply packet
RERR Route error packet
RTO Retransmission timeout
CHP Catalyst helper packets
GPTlow Threshold goodput of a flow

lesser than which CHPs are sent

T1
h Threshold RTO value of a TCP

connection above which CHPs are sent

T2
h An RTO value greater than T1

h
Tgt Time period in which average goodput

of a flow is observed
Tpd Observing nodes check for JF attacks

after every Tpd seconds

Tw
chp Duration for which no CHPs are sent

on a route after RREQ message
MIN INV S Minimum Threshold for repeatedly

detected drop intervals
NUM FWD Threshold number of evidences

between specific intervals
Qmax Maximum queues managed by observer

nodes to log packet forwarding
actions and reception time

ETH Threshold value of overall evidences
required to be collected

tex The catalyst-helper packets (CHPs) are
sent periodically after tex + δt seconds

3.1 Detecting Jellyfish Attacks

The main difficulty in detecting JF attacks consists of the non-continuous mis-
behavior of attackers. That is, an attacker quickly forces all victim TCP flows
to enter the slow-start state so that a few packets will be sent over long periods.
This makes it difficult for observing nodes to distinguish between malicious be-
haviors (packet dropping, reordering, and delaying) and benign behaviors due to
network events such as congestion and route change. Therefore, in our proposed
model, the TCP protocol is modified so that when it faces a very low goodput or
high RTO values, it starts sending packets called catalyst-helper packets (CHPs)
in a constant ratio to check if a congestion is still there or not. This avoids long
waiting times if there is no longer network congestion and allows observing nodes
to detect misbehaviors by attackers and hence those nodes can be isolated.

To identify packets in the network, they are supplied with cumulative sequence
numbers (SEQs) in clear text. That is, when the routing agent receives a segment
from layer 4, the SEQ field of the packet is incremented by one. Moreover, each
new flow is supplied with a unique id number (flow id). This allows observing
nodes to identify packets by 3-tuple values (IP address, flow id, SEQ) and to
reduce the amount of bytes needed to store information about each observed
packet by only storing these 3-tuple values. Moreover, observing nodes are easily
able to detect JFreorder attacks by comparing the SEQs of outgoing packets
only.

In order to detect JFperiodic attacks, observing nodes store the reception time
of each packet at observed nodes. A packet that is not forwarded within a specific
period is considered as dropped. Observing nodes also collect a set of distances
between two successive observed drop intervals to emulate the malicious periodic
drop interval. When many forwarded packets are observed, the set of offsets
relative to the set of distances is determined and the biggest gap is computed.
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When the found gap contains several drop intervals within it, a JFperiodic attack
is detected. The accuracy of detection improves with an increase in the number
of forwarded packets considered. The next subsections will describe the detection
scheme of JFperiodic and JFreorder attacks in detail. The detection of JFdelay
attacks is beyond the scope of this paper.

Modification of TCP Protocol. TCP congestion control has two main limita-
tions during the slow-start state. First, the nodes back-off exponentially. Second,
only one segment is sent between two successive retransmission timeouts (con-
gestion window cwnd = 1). For instance, in severe cases it sends one segment and
waits for 32 seconds, it then sends another segment and waits for 64 seconds, and
then the connection terminates. Backing off exponentially and waiting for longer
periods is not necessary in most cases. Moreover, sending a few segments during
back off time does not bring the whole network down (unless the whole network
is congested). Furthermore, when a relay node in a WANET is congested for a
long time, it is likely that a link-breakage event would occur and a router error
message RERR is sent to the source node. Therefore, there is a need to modify
the TCP protocol to get rid of the above mentioned limitations of the protocol.
Yet, the modification should not be in the core functionality of TCP in order to
make it adaptable to the existing, wide-spread TCP variants.

We denote the last sent segment with the lowest sequence number that is not
yet acknowledged by a catalyst-helper packet (CHP). Sending one CHP during
back off time can avoid long waiting times. When this CHP is acknowledged,
the RTO is reset to the minimal RTO and the congestion window is doubled. If
the congested relay node is freed or another route is established, then the TCP
flow resumes sending of the packets.

As depicted in Figure 1, the TCP protocol is modified to send CHPs period-
ically with a small variation of every tex + δt seconds in the following cases:

– As long as the RTO value of a TCP connection is greater than a threshold
value T 1

h and there exists an established path to the destination.

– The average goodput (in Kbps) during the last Tgt seconds (GPTgt) is too
low, that is, less than a threshold value GPTlow.

Moreover, if the RTO value is higher than a threshold value T 2
h > T 1

h , which
means that it is high enough to indicate a severe congestion/attack, the source
node will initiate the route discovery procedure by sending a route request
(RREQ) packet towards the destination node. Additionally, the sending time
T s
RQ is stored and no other CHPs on the same route will be sent for Tw

chp sec-

onds. High values of T 1
h and Tgt slow down the detection speed of malicious nodes

while small values result in sending unnecessary CHPs which increases the con-
gestion in the network if there is no attack. If the RTO is too high, then it is very
likely that the route to the destination contains a congested node. Therefore, the
source node will try to establish another route by initiating the route discovery
procedure. The modification can be incorporated in existing TCP protocols via
a patch.
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Fig. 1. TCP modification. NOW = current time.

We illustrate the effect of TCP-modification with an example. Con-
sider Figure 2 that describes an experiment conducted on a three-node chain
with one relay node and one TCP connection. The AODV routing protocol and
the IEEE 802.11 MAC protocol at 11 Mb/sec are used. To achieve the null
(zero) goodput, the malicious node (relay node) drops all received packets for
22.5 mili-seconds after every 250 mili-seconds and forwards the rest. The JFpe-
riodic attack starts from the 10-th second and the simulation duration is 100
seconds. The values of the modified TCP parameters are: tex = 1sec, T 1

h = 3sec,
Tgt = 5sec, GPTlow = 10Kbps, and Tw

chp = 5sec.
When no CHPs are sent, the attacker achieves a successful attack and brings

the goodput of the victim flow to null (red line in the figure). All the retrans-
mitted segments have been dropped by the attacker and the RTO timer doubles
each time when a retransmission timeout occurs. The second graph (green line)
describes the goodput when only one CHP is sent. At 15 sec, when the RTO
is equal to 4, the sender sends a CHP which is successfully acknowledged. This
causes the RTO value to be reset to the minimal RTO value (0.2 sec) and the
congestion window to be doubled. The attack forces the TCP agent to have small
RTO- and congestion window values which saves longer waiting time and thus
results in a goodput of 50 Kbps. This is equal to 20% of the peak value. This
allows nodes to detect attackers by observing a persistent dropping/reordering
patterns. During the simulation, only one CHP is sent which incurs a very small
overhead.
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Fig. 2. Impact of sending CHPs on Goodput

In case of severe JFperiodic and JFreorder attacks, the sender needs to send
more CHPs per second to accelerate the detection and isolation processes and
thus establishes a new route free from malicious nodes.

TCP modification on client side is only a means to help network nodes to
detect malicious nodes.

Fig. 3. Structure of the IP Header

Additional Information for IP Packets. Figure 3 describes the structure
of the IP header. Segments that are received by the network layer from the TCP
agent are supplied with cumulative 16-bit sequence numbers (SEQs) starting
from a random number. Moreover, each flow is identified with a unique 16-bit
number (flow id). A 3-tuple value (IP address, flow id, SEQ) is used to identify
IP packets in the network. The uniqueness is guaranteed because no two nodes
exist that share the same IP. Each new flow gets a unique flow id by the network
layer. Moreover, the flow id and the SEQs are sent in clear text to allow network
nodes to identify the packets. Flow ids and SEQs can be incorporated in IP
packets by exploiting the option field of IP packets.

Additional Information for Link Layer Acknowledgments. As the name
implies, link layer ACKs are small frames that contain only link layer infor-
mation. That is, observing nodes would not be able to detect when and which
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Fig. 4. IEEE 802.11 MAC ACK

packet an observed node has received. Moreover, in some MAC protocols such as
the famous IEEE 802.11 MAC protocol, it is not possible for observing nodes to
know the originator of a link layer ACK due to the missing ACK-sender address
as shown in Figure 4.

Therefore, link layer ACKs are modified to include the following information:

– MAC address of the acknowledging node,
– Source address of the acknowledged packet,
– Flow id of the acknowledged packet, and
– SEQ field of the acknowledged packet.

Fig. 5. Modified IEEE 802.11 MAC ACK

After modification, IEEE 802.11 ACKs would look as shown in Figure 5. In this
way, each packet’s reception and forwarding can be detected and identified
by all one-hop nodes. We illustrate it here with an example. As shown in Figure 6,
nodes A, C,D, and E are located within the transmission range of node B. When
B receives a packet from node A (step 1), B sends a link layer ACK to node
A (step 2). Nodes C and E can identify the packet received by B and store
the reception time. In step 3, node B forwards the packet to node C. Nodes A,
D, and E can see the forwarding action of the same packet. If node B is a JF
attacker, it will be detected and isolated simultaneously by all of its one-hop
neighbors. When B tries to establish a new route through it by forwarding route
request/reply (RREQ/RREP) packets, one-hop neighbors will refuse to process
them by dropping them.

One advantage of the new IP and MAC ACK formats is the reduction of the
amount of buffer space needed by observing nodes to store information about
observed packets. Observing nodes in traditional trust based systems [4,5,6,7,8]
store each observed received packet for t seconds. If the observed node does not
forward the packet within t seconds, then the packet is considered dropped. If
for example 500 packets of size 500 bytes are observed within t = 2sec, the
maximal amount of buffer space needed is then 250 Kbytes, whereas the amount
of buffer space needed in our scheme is very small. For example, an observing
node needs to store the IP, flow id, and the first seen SEQ of a flow only once
and then stores the SEQ offsets of observed packets relative to the first seen
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Fig. 6. Detecting actions of nodes

SEQ. However, a question arises that how would node E identify that node B
has received a packet if the packet identification- and the MAC sender-fields
are unknown? Another problem arises if nodes collect second-hand-information
(recommendations) about each other: How to detect spurious recommendations?

3.2 Detecting Jellyfish Periodic Dropping Attack

The difficulty in detecting JFperiodic attacks is in differentiating between ma-
licious dropping and dropping due to network events such as congestion. We
see this problem from another aspect. If packets are dropped in periodic inter-
vals, then no packets are forwarded in these intervals and all packet forwarding
actions occur in other periodic intervals as shown in Figure 7.

Fig. 7. A JFperiodic Attack

The detection scheme exploits two features. First, packet reception time is in-
dependent of the receiver, that is, a node cannot control when to receive packets.
Second, packet forwarding actions occur periodically in constant intervals.

The first feature is routing protocol dependent. When a small number of
packet retransmission-attempts fail, a link-breakage error occurs and a RERR
packet is sent towards source nodes, which is not desired by JF attackers. The
second feature is used to distinguish between malicious packet dropping and
packet dropping due to network events.

(i) Logging Actions of Neighbors
Each node in the network keeps track of its neighbors’ actions on infor-
mation packets. Recall that packets are identified by a 3-tuple value (IP
address, flow id, SEQ). We define the possible actions that can be per-
formed on a packet with a specific SEQ number as follows:
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– NOT SEEN: Packet has not been observed by an observing node (de-
fault value).

– RECEIVED: Observed node has received the packet, but has not yet
forwarded it and the observer has started a RECEIVE TIMEOUT
timer.

– DROPPED: Packet had been received by an observed node and no
forwarding action has been observed by the observer till the RECEIVE
TIMEOUT expires.

– FORWARDED: Observed node has forwarded the packet within RE-
CEIVE TIMEOUT seconds.

Fig. 8. An Example of Logging of Actions

Logging neighbors’ actions is illustrated in an example in Figure 8. Con-
sider that A → B means sent from node A to B, B → C means sent from
node B to C, and so on. Let all nodes be relay nodes and direct neighbors
of each other. Furthermore, we denote the action performed by node o on
packet p and seen by node n by actno (p). Consider only the updating of
node B′s actions by nodes D, E, F , and G. Moreover, assume that node
D has seen action 2, node E has only seen action 3, node F has only seen
action 4, and node G has only seen action 5. When node D observes action
2, it sets actDB (p) =RECEIVED and after RECEIVE TIMEOUT seconds
it sets actDB (p) =DROPPED. When node E observes action 3, it sets
actEB(p) =FORWARDED. When node F observes action 4, it sets
actFB(p) =FORWARDED. When node G observes action 5, it sets
actGB(p) =FORWARDED.

As mentioned earlier, we only concentrate on JF attacks that target the
whole network. Therefore, each observing node n manages a queue Qn

o

for all flows that traverse an observed neighbor o. Queue Qn
o contains

the logged actions together with the reception time of each logged packet
(monotonically increasing) that has been observed until RECEIVE TIME-
OUT expires. Moreover, Qn

o has a maximum size of Qmax, which plays
an important role in the speed of detecting malicious nodes and it will be
discussed in the next subsections. An entry of the queue Qn

o consists of the
following tuple:
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Reception time of packet p action ∈ {DROP, FWD}

(ii) Collecting Candidate Periodic Intervals. Congestions and thus
packet dropping actions are inevitable in WANETs. Therefore, JFperi-
odic attackers might also drop packets during the forwarding phase due
to congestion. This makes it harder for observing nodes to detect constant
periodic intervals that consist of pure packet forwarding and pure packet
dropping subintervals as shown in Figure 7. We transform the queue Qn

o

into a list of intervals denoted by ltr that consists of alternating pure drop-
and forward-intervals. That is, each two successive equal actions belong to
the same interval. Both of the successive equal actions are either in drop
or in forward intervals. Each interval x has the following parameters:

– x.stime: start time of interval x,

– x.etime: end time of interval x,

– x.middle: middle time of interval x.

The set of candidate periodic intervals (DISTANCES) is then collected.
For each drop interval x in ltr and for each drop interval y in ltr which is
close to x, i.e. |y.stime− x.stime| < Tinv , where Tinv is a threshold value
that expresses the distance between the intervals x and y, the differences
between the start-, middle- and the end times of x and y are inserted
into DISTANCES. The flow chart in Figure 9 illustrates how the set
DISTANCES is formed. For small values of Tinv (Tinv is smaller than
the periodic drop interval length), it is very likely that the JFperiodic
attack is not detected, while high values of Tinv may lead to unnecessary
computational overhead.

(iii) Detection Mechanism

The detection mechanism is based on collecting FORWARDED actions,
denoted by evidences. The more evidences are collected, the more accurate
will be the detection of JFperiodic attacks. The detection mechanism is
run for each distance in DISTANCES.

When the number of evidences is greater than a threshold value ETH , the
following steps are carried out:

(a) The time axis starting from the oldest action in Qn
o till the most recent

action in Qn
o is divided into intervals of length distance ( Figure 10 a).

(b) A new empty interval of length distance is created, denoted by INV .

(c) The offset of each evidence relative to the start time of its interval is
computed ( Figure 10 b).

(d) Each computed offset is then added to INV ( Figure 10 c).

(e) The maximum gap g1 between two successive evidences in INV is
determined.

(f) Let g2 be the difference between distance+the lowest offset in INV
and the highest offset in INV . The maximum gap g is then equal to
the maximum between g1 and g2.
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Fig. 9. Setting value of DISTANCES

(g) Let num be the number of drop intervals in ltr that are smaller than the
gap g and are really located inside the found gap (offsets compared). If
num is greater than a threshold value MIN NUM , then a JFperiodic
attack is detected.

The higher the ETH , the more accurate the detection scheme. If the ob-
served node o is benign, then the evidences in INV will be distributed
throughout the whole interval and the maximum gap g will be very small
so that it will not contain any drop intervals. If node o is malicious, the
value of g will be high enough to include several pure drop intervals within
it. Empirical results show that when ETH > 300 · distance, there will be
no false positives. This means that there will be no benign nodes that are
detected as JFperiodic attackers. Lower values might consider one or two
benign nodes as attackers.

Qmax, the maximum size of Qn
o , plays an important role in the detection

speed of JFperiodic attackers. High values of Qmax achieve more accuracy
in the detection mechanism. On the other hand, the detection speed gets
slower because the queue Qn

o would contain old actions that have been
observed before the attack has started. These actions will be considered
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Fig. 10. Detecting JFperiodic Attacks

in the detection algorithm and will therefore result in smaller values of gap
g and num. Hence, the probability to detect the attacks gets lower.

3.3 Detecting Jellyfish Reorder Attack

Including flow ids and cumulative SEQ numbers in IP packets makes the detec-
tion of JFreorder attacks very easy. This is because observing nodes can detect
persistent reordering of packets by comparing the SEQ numbers of outgoing
packets (of the same flow). If an observed node sends packets with SEQ number
lower than the maximum sent one, a misbehavior is detected. If misbehaviors
continue for at least Treorder seconds, a JFreorder attack is detected. If a victim
flow suffers from a very low goodput, it starts sending CHPs and the attacker
continues reordering packets and thus the attack will be detected by one-hop
neighbors. Packet reordering events in WANETs are rare, short-lived, and occur
due to network events such as route changes [9]. Threshold time Treorder must
be longer than the duration of packet reordering due to these network events.

4 Conclusion

In this research paper a mitigation scheme to detect jellyfish attacks has been
introduced. Future work includes the development of a new security scheme to
detect and isolate colluding nodes, to enable source nodes to detect jellyfish
nodes, and to exclude them from being part of new routes.
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